GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ADVANCE ELECTRICAL MACHINES (COURSE CODE: 3350906)

Diploma Programmes in which this course is offered	Semester in which offered
Electrical Engineering	5 th Semester

1. RATIONALE

Electrical machines play a vital role and are the basic needs of industries for various applications like, production, processing, fabrications, Assembling etc. Due to research and development electrical machines are modernized. Advance electrical machines will be useful to create awareness with modern technology. Advance electrical machines have higher efficiency, small size and useful for specific applications. The most significant development in recent years in the allied area of motor control also plays an important role. Essential efforts are made in this course to make familiarize the students with advance technology in machines which is a necessity for successful technician.

2. **COMPETENCY**

The course content should be taught and implemented with the aim to achieve different types of skills leading to achieve the following competencies.

•Maintain different advance electrical machines.

3. Course Outcomes:

The students will be able to:

- Maintain different types of three phase transformers.
- •
- •.

4. Teaching and Examination Scheme

Too	ching Sc	homo	Total		Examin	ation Sch	neme	
Teaching Scheme (In Hours)		Credits (L+T+P)	Theory Marks			ctical rks	Total Marks	
L	Т	P	C	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	1a.Explain the V-V connection	1.1 Open delta or V-V connection
THREE	and scott connection	1.2 Scott connection
PHASE	1b.Explain the working of	1.3 Construction, working and
TRANSFORM	Three winding transformer.	application of
ER	1c. Explain the working of	(a)Three winding transformer
	Constant Voltage	(Tertiary winding)
	Transformer & Constant	(b)Constant current transformer (CCT)
	Current Transformer	(c)constant voltage transformer (CVT)
Unit – II	2a.Explain the working	2.1 Working of induction motor as
	principle of induction	induction generator
INDUCTION	generator	2.2 Principle, construction and working
MACHINES	2b.Explain the working	of double cage induction motor, slip-
	principle of double cage	torque characteristics
	induction motor.	2.3 Phenomenon of crawling and cogging
	induction motor.	2.4 Principle, construction and working
		of induction regulator
		2.5 Principle, construction and working
		of submersible motor.
		of submersible motor.
Unit-III	3a.Explain the working of DC	3.1 DC machine automatic starter
STARTERS	motor starters with control	(a)Back emf starter
SIARIERS	circuit diagram.	(b)Time delay starter
	3b.Grading of DC shunt and DC	3.2 Working principle and common
	series motor starters.	settings of soft starter.
	3c.Explain principle of soft	3.3 Slip-ring induction motor starter.
	starters.	3.4 Resistance calculation of DC shunt
	starters.	and series motor starters.
		und series motor starters.
Unit-IV	4a.Explain the theory on which	4.1 Two reaction theory
SALIENT	salient pole synchronous	4.2 Phasor diagram
POLE	machine works.	4.3 Power developed by synchronous
SYNCHRON	4b.Derive the expression for	generator
	synchronizing power.	4.4 Synchronizing power and torque
OUS	4c. Describe slip test to	developed by two alternators in
MACHINE	determine X_d and X_q salient	synchronism
	pole synchronous machines	4.5 Torque-angle characteristics
	4d. Explain static excitation	4.6 Slip test
	system with the help of neat	4.7 Static Excitation system for
	sketch.	synchronous m/c
Unit-V	5a.Explain the construction,	Construction, working, and application of
SPECIAL	working & application of	5.1 Single phase synchronous motor –
ELECTRICAL	single phase synchronous	Hysteresis and reluctance.
MACHINES	motor.	5.2Permanent magnet synchronous motor
1411.101111.41.0	5b.Explain the construction,	5.3Permanent magnet DC motor
	working & applications of	5.4Stepper motor
	elementary stepper motor &	5.5Brushless DC motor
	its types.	5.6Switched reluctance motor
	5d. Explain construction and	5.7Servomotors

Unit	Major Learning Outcomes	Topics and Sub-topics
	working and applications of Brushless DC Motor 5e. Explain the significance of Brushless DC Motor. 5c. Explain construction and working and applications of Switch Reluctance Motor 5c.Explain construction and working of permanent magnet DC motor	5.8 Synchros 5.9 Resolver 5.10 Linear Induction motor 5.11 Comparison between variable reluctance stepper motor and switched reluctance stepper motor 5.12 Comparison between Conventional DC motor and Brushless DC motor

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	A	Total
			Level	Level	Level	Marks
I	Three Phase Transformer	08	00	06	00	10
II	Induction Machines	06	00	08	00	10
III	Starters	06	00	12	08	16
IV	Salient Pole Machine	08	04	10	08	16
V	Special Electrical Machines	14	04	02	08	18
Total		42	08	38	24	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive**, **psychomotor and affective domain**) so that students are able to acquire the competencies. Following is the list of practical exercises for guidance.

Sr. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	
1	I	Perform V-V connection on the three phase transformer and measure load carrying capacity of the V-V connected transformer	2
2	Perform two phase to three phase conversion and vice versa using Scott connection.(Transformer A : secondary winding has 50% tapping and Transformer B : both windings have 86.6% tapping)		2
3	1	Conduct test on Constant Voltage Transformer to plot V-I characteristics.	2
4	I	Conduct test on Constant Current Transformer to plot V-I	2

		Total	28	
16	V	To perform torque- rotor position with respect to stator of the BLDC motor.	2	
15	V	Demonstrate each part of Linear induction motor and working of it	2	
14	V	Perform torque-rotor position characteristics of the three phase Switched Reluctance Motor	2	
13	V	Conduct test on Stepper motor for forward/ reverse & position control.	2	
12	12 IV Perform Slip test on Salient pole synchronous motor and determine Xd & Xq.		2	
11	III	Calculate starter resistance and its grading for DC Series motor.	2	
10	O III Calculate starter resistance and its grading for DC Shunt motor.		2	
9	III	Understand the working of Time delay starter with a neat control circuit diagram.	2	
8	III	Understand the working of Back emf starter with a neat control circuit diagram.	2	
7	II	Measure output voltage of the induction regulator for different position of the rotor.	2	
6	II	Plot torque- slip characteristics of double cage induction motor and compare with that of induction motor.		
5	II	Plot torque-speed characteristics of induction generator and compare with that of induction motor.		
		characteristics.		

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based seminars, internet based assignments, teacher guided self learning activities, course/library/internet/lab based mini-projects---etc.

- 1. Identify and select various measuring instruments as per required range
- 2. Prepare journal based on experiments performer in the laboratory
- 3. Prepare chart displaying the various parts of DC machine
- 4. Prepare chart displaying the various parts of AC machine

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

10. SUGGESTED LEARNING RESOURCES

A) List of Books

Sr. No.	Title of Book	Author	Publication
1.	B.L.Theraja	Fundamentals of Electrical Engg.	S Chand
2.	B.L.Theraja-II	Electrical Machines	S Chand

3.	V.K.Mehta	Fundamentals of Electrical Engg.	S Chand
4.	S.L.Uppal	A text book of Electrical Engg.	Khanna publication
5.	A K SAWHNEY	Electrical measurement and instrumentation	Dhanpat Rai & Sons
6.	J B GUPTA	Electrical Power Utilization and Traction	S.K.Kataria & Sons

B) List of Major Equipment/ Instrument with Broad Specifications

- 1. **Stepper motor trainer kit** forward/ reverse, speed controls to all Actuators control. HALF, FULL and WAVE modes, Unipolar and Bipolar stepper motor. Step rate measurement, motor phase, mode and direction indication
- 2. **Brushless DC motor trainer kit-** Variable speed control (PWM) with 4 quadrants, Power supply: 24Vdc, Speed and Current (no load): 4200rpm/0.4A, Speed/torque/current (with load): 3250rpm/0.24Nm/4.8A, LCD display with 4 lines of 18 characters
- 3. **Transformers-** coils and mechanical parts, copper excluded, for the construction of the transformers

single phase, 1000 VA, 220/380 V

three phase, 1000 VA, 220/380 V

It must be possible to perform the following exercises:

Single - phase transformer 1000 VA, 220 - 380 / 180 V

Three - phase transformer 1000 VA, 220 - 380 DY / 110 Y V

4.Power analyzer

3 phase / 1 phase measurement

True RMS Voltage 600/1200 V

True RMS Current 80 A

Power measurement (Active power, reactive power & apparent power)

Power factor measurement

Frequency Measurement

RS-232 serial communication

LCD display

C) List of Software/Learning Websites

Searching engine could be used to locate textile related sites

- A. www.electricalandelectronics.org
- B. www.allaboutcircuits.com
- C. www.nmbtc.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- Prof. R D Panchal, Lecturer in Electrical Emgg, R C Technical Institute, Ahmedabad
- Prof. H C Chawda, Lecturer in Electrical Emgg, R C Technical Institute, Ahmedabad
- •Dr. A S Pandya, HOD Electrical, G.P. Rajkot
- Prof. N. N. PANDYA, Lecturer in Electrical Engineering, Govt. Poly, Ahmedabad.

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. (Mrs.) Susan S. Mathew
- Dr. Joshua Earnest,