GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: POLYPHASE TRANSFORMER AND AC ROTATING ELECTRICAL MACHINES

Course Code: 3340901

(Code: 3340901)

Diploma Programme in which this course is	Semester in which offered
offered	
Electrical Engineering	4th Sem

1. RATIONALE

This course will enable the students to develop skills to operate AC Machines and poly phase transformers in power, commercial and industrial sector. They will be able to perform different tests and troubleshoot the various types of AC machines and ploy phase transformers. Essential theoretical and practical knowledge will be achieved by this course.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- i. Maintain various types of AC machines.
- ii. Maintain various types of poly phase transformers.

(The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency)

3. Course Outcomes:

Student will be able to:

- Know the constructional details & working principal of various types of ac machines & Operate given machine properly.
- Use the knowledge for testing of machine.
- Select motors of proper rating for particular use.
 (Relate this knowledge to understand the subject of higher semester)

4. Teaching and Examination Scheme

Tea	ching Scl	neme	Total	Examination Scheme										
	(In hours)		Credits	Theory Marks		Theory Marks		Theory Marks		Theory Marks		Practica	al Marks	Total
		(L+T+P)					Marks							
L	T	P	C	ESE	PA	ESE	PA							
4	0	4	8	70	30	40	60	200						

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning	Topics and Sub-topics
	Outcomes	
Unit – I.	1.a Execute various	1.1 Construction of three phase
POLY PHASE	test on transformer	core and shell type transformer
TRANSFORMER	to find out regulation &	1.2 Comparison of a bank of three
	efficiency.	single phase transformer and
	1.b Operate	single three phase transformer.
	transformers in	1.3 Vector group
	parallel satisfying	1.4 Parallel operation of 3-phase
	necessary	transformer.
	conditions.	1.5 Accessories of transformer:
		Main tank, bushings,
		conservator with breather, oil
		level gauge, radiators,
		buchholz relay, explosion vent,
		temperature indicators,
		junction box
		1.6 Cooling of transformer: Natural cooling, Forced
		cooling
		1.7 Name plate
Unit- II	2.a Use different	2.1 Principle of working and
POLY PHASE	methods of	construction.
INDUCTION	starting for three	2.2 Rotating magnetic field
MOTORS	phase Induction	2.3 Types of three phase induction
	motor.	motor
	2.b Operate three	2.4 Slip
	phase Induction	2.5 Effect of slip on the frequency
	Motor at different load conditions.	and voltage
	2.c Computation of	2.6 Torque and condition for the maximum torque
	motor	2.7 Effect of change in supply
	performance from	voltage on speed and torque.
	circle diagram.	2.8 Effect of change in frequency
		on speed and torque
		2.9 Torque-slip curve
		2.10 Necessary of starter.
		2.11 Types of starter, their
		connection diagrams and
		working.
		2.12 Power stages and
		maximum power output.
		2.13 Vector diagram and

Unit	Major Learning	Topics and Sub-topics		
	Outcomes			
		equivalent circuit of poly phase		
		induction motor.		
		2.14 No load test and		
		Blocked rotor test		
		2.15 Computation of motor		
		performance using circle		
		diagram.		
		2.16 Measurement of slip		
		2.17 Speed control of		
		induction motor of squirrel		
		cage and slip-ring induction		
		motor		
		2.18 Concept of Induction		
		generator		
		2.19 Principle of working		
		and construction of		
		submersible motor.		
		2.20 Linear induction motor.		
Unit– III	3.a Operate an	3.1 Principle of working &		
ALTERNATOR	alternator on	construction.		
	different types of	3.2 Salient pole and Cylindrical		
	load	pole type alternator		
	3.b Methods of	3.3 Damper winding		
	voltage regulation	3.4 Types of armature winding		
	of an alternator	3.5 Define: Distribution factor,		
	3.c Synchronize an	pitch factor		
	alternator with	3.6 Induced emf equation		
	infinite bus bar.	3.7 Effect of Armature reaction		
		3.8 Vector diagram of alternator.		
		3.9 Different Methods of voltage		
		regulation		
		3.10 Parallel operation of		
		alternators		
		3.11 Synchronizing of		
		alternators with busbar		
		3.12 Cooling system of		
		alternator		

Unit	Major Learning Outcomes	Topics and Sub-topics
	Outcomes	
Unit-IV	4.a Connect and	4.1 Principle of working &
SYNCHRONOUS	operate	construction.
MOTOR	synchronous	4.2 Methods of starting
	motor using	4.3 Power developed by
	proper starting	synchronous motor
	method	4.4 Effect of change in excitation
	4.b Improve the power	4.5 Vector diagrams and 'V'-
	factor of the	curve
	system using	4.6 Methods of starting
	synchronous	4.7 Hunting and function of
	motor	damper winding
	4.c Draw Vector	4.8 Different torque of a
	diagrams and	synchronous motor
	analyzes 'V'-	4.9 Comparison between induction
	curves	motor and synchronous motor
		4.10 Applications
Unit-V	5.a Identify the types,	5.1 Classification of single phase
SINGLE PHASE	construction and	induction motor
INDUCTION	characteristics of	5.2 Double field revolving theory
MOTORS	single phase	5.3 Making single phase induction
	induction motors	motor self staring
	5.b Select different	5.4 Equivalent circuit
	types of motors	5.5 Construction, characteristics
	based on	and application of various
	applications.	types of single phase induction
		motor

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	A	Total
			Level	Level	Level	Marks
Ι	POLYPHASE TRANSFORMER	10				12
II	POLYPHASE INDCUTION	16				18
	MOTORS	10				10
III	ALTERNATOR	12				16
IV	SYNCHRONOUS MOTOR	10				14
V	SINGLE PHASE INDUCTION	8				10
	MOTORS	0				
	Total	56				70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Code: 3340901

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive**, **psychomotor and affective domain**) so that students are able to acquire the competencies.

Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain

S. No. Unit No.		Practical Exercises	Hrs.	
		(Outcomes' in Psychomotor Domain)	required	
I To identify different parts of three phase dismantled		1	2	
1		transformer.	2	
2	I	To perform parallel operation on three phase transformer.	2	
	II	(a) To measure the slip of 3-phase IM by		
		1) Tachometer.		
3		2) Comparing rotor & stator frequency	6	
3		3) Stroboscopic method.	U	
		(b) To reverse the direction of rotation of 3-phase IM.		
4	II	To perform direct load test on three phase induction motor and	4	
7		find its efficiency at various load condition.	7	
	II	To perform no load test and blocked rotor test on three phase		
5		induction motor and construct its circle diagram and find out its	4	
		various performance parameters.		
	II To make connections of DOL starter / star-delta starter / auto			
6		transformer / rotor rheostat starter for appropriate three phase	4	
		induction motor.		
	II	To perform speed control of squirrel cage induction motor by		
7		1. By changing the supply voltage.	2	
		2. By changing the applied frequency.		
	II	To perform speed control of slip-ring induction motor by		
8		1. Rotor rheostat control.	4	
		2. By injecting an emf from rotor side.	T	
		3. By operating two motors in cascade connection.		

	III	To find out voltage regulation of alternator by synchronous	
		impedance method for:	
10		1. Unity power factor.	4
		2. Lagging power factor.	
		3. Leading power factor.	
	III	To find out voltage regulation of alternator by ampere turn	
		method for :	
11		1. Unity power factor.	4
		2. Lagging power factor.	
		3. Leading power factor.	
12	12 III To perform synchronizing of alternator with bus bar.		2
12	III	To list & explain various starting methods of synchronous	2
13		motor & applying one of them to start the synchronous motor.	2
1.4	IV	To construct V-curves of synchronous motor at different load	2
14		conditions.	2
15	V	Testing of circuit of capacitor start capacitor run single phase	2
motor (ceiling fan).		motor (ceiling fan).	2
		Total	48

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- Prepare chart for accessories of three phase transformer
- To list the various types of 1-phase Induction motor, collect literature form Dealers/Manufactures from local places and compare on following points (a)Method of starting
 - (b)Cost
 - (c)performance
 - (d)Starting torque
- To list & explain various starting methods of synchronous motor & applying one
 of them to start the synchronous motor. Plot V curve & inverted V curve of the
 same
- To list different types of starters used for 3-phase IM .Identify it & use the same to

To start three phase induction motor

• Download catalogue of three phase transformer, three phase induction motor, synchronous motor and alternator and study it

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

Visit transformer and induction motor manufacturer/ workshop site

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Electrical Technology Vol. II	B. L. Theraja	S chand & Co.
2.	Electrical Machines	Smarajit Ghosh	Pearson
3.	Electrical Machinery	A.E.Fitzgerald Charles Kingsley, Jr. Stephen D. Umans	Mc. Graw Hill
4.	Theory & performance of Electrical Machines	J.B.Gupta	S.K. Kataria & sons
5.	Electrical Machines	Ashfaq Hussain	Dhanpatrai & Company
6.	Electrical Machine 1	J.S.Katre	Tech max publications, Pune

Course Code: 3340901

B) List of Major Equipment/ Instrument with Broad Specifications

- Three phase transformer: 2KVA, 415V /415V, 50 Hz, 2.8A
- Three phase induction motor: 5 HP, 440V, 8.0A, 1400 RPM Squirrel cage type with brake drum arrgangement
- Three phase induction motor: 5 HP, 440V, 8.0A, 1400 RPM Slip-ring induction motor
- Synchronous motor: 3 HP, 415V, 3-phase, 50Hz, 1500 RPM
- DC shunt motor- Alternator set :DC shunt motor : 5 HP, 220V, 1500 RPM, 18A, Excitation- 220V DC
- Alternator: 3KVA, 415V, 3-phase, 3.5A, 1500 RPM, Excitation-220V DC Single phase induction motor: 1 HP, 220 V, 50Hz, 1440 RPM Drum brake with spring balances

C) List of Software/Learning Websites

- 1. www.sskphdmm.com
- 2. WWW.nptel.iitm.ac.in

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. H C CHAWDA, RC TECHNICAL INSTITUTE, AHMEDABAD
- Prof. R D PANCHAL, RC TECHNICAL INSTITUTE, AHMEDABAD

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. (Mrs.) Susan S. Mathew
- Dr. Joshua Earnest,