GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Computer Organization and Architecture (Code: 3340705)

Diploma offered	Programmes	in which	this	course	is	
Computer Engineering			4 th Sem			

1. RATIONALE

This course provides detail of computer system's functional components, their characteristics, performance and interactions including system bus, different types of memory and input/output organization and CPU. This course also covers the architectural issues such as instruction set program and data types. On top that, the students are also introduced to the increasingly important area of parallel organization. This subject serves as a basic to develop hardware related projects.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- ■Define and explain computer architecture and organization concept including functional components and their characteristics, performance and the detailed interactions in computer system including system bus, different types of memory and input/output as well as CPU.
- Apply computer architecture theory to solve the basic functional computer problem.
- Show and assemble basic computer components.

3. Course Outcomes:

- 1.Describe the organization of a computer system in terms of its main components.
- 2.Identify various parts of a system memory hierarchy.
- 3.Interface digital circuits to microprocessor systems.
- 4.Relate design principles in instruction set design including RISC architectures.

4. Teaching and Examination Scheme

Teaching Scheme		Total	Examination Scheme					
(In Hours)			Credits	Theory Marks		Practical		Total
		(L+T+P)			Ma	rks	Marks	
L	T	P	C	ESE	PA	ESE	PA	100
3	0	0	3	70	30	00	00	130

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and
		Sub-topics
Unit – I Computer Architectur e &	1a. Describe different types of Flip Flops.	1.1 Overview of computers and basics of Digital Electronics-Flip Flops, Registers, Shift registers
Register- Transfer and Micro- operations	1b. Explain registers and register transfers are represented in resister transfer language.	 1.2 Register - Transfer- Language 1.3 Register Transfer 1.4 Bus Transfer and Memory Transfer
	1c. Describe various arithmetic micro operations.	1.5 Arithmetic Micro- Operations
	1d. List various logic micro operations.	1.6 Logic micro operations
	1e. List various shift operations and explain arithmetic shift operation.	1.7 Shift Micro operation.1.8 Arithmetic Logic Shift Unit
Unit – II Basic	2a. Discuss the various fields of instruction code.	2.1 Instruction Codes
Computer Organizatio	2b. Define registers and state the role of each register in a basic computer.	2.2 Computer Registers
n	2c. List the types of computer instruction format in a basic computer.2d. Develop a control timing signals diagram for the given instruction.	2.3 Computer Instructions2.4 Timing and Control
	2e.Explain phases of instruction cycle.	2.5 Instruction Cycle2.6 Memory ReferenceInstructions
	2f. Describe interrupt.	2.7 Input-Output and Interrupt

Unit	Major Learning Outcomes	Topics and			
		Sub-topics			
	2g. Draw functional block diagram of the	2.8 Complete Computer			
	hypothetic BASIC computer.	Description			
Unit – III	3a. Draw General Register organization.	3.1 General Register			
Central		Organization			
processor	3b. Define stack. Explain the stack	3.2 Stack Organization			
organizatio	organization of CPU.				
n& Pipeline	3c. Define instruction and instruction format.	3.3 Instruction Formats			
processing					
	3d. Discuss various addressing modes used in	3.4 Addressing Modes			
	computers.				
	3e. Explain data transfer and data manipulation	3.5 Data Transfer and			
	instruction.	manipulation:			
	3f. Discuss program control instructions.	3.6 Program Control			
	3g. Compare RISC and CISC	3.7 RISC			
	Architecture.	3.8 CISC Characteristics			
		3.9 RISC Characteristics			
	3h. Describe pipelining in CPU Design.	3.10 Parallel Processing			
Unit – IV	4a. Classify various types of Memory.	4.1 Memory classifications			
Memory	4b. Understand memory hierarchy and	4.2 RAM,ROM,PROM,EPR			
Organizatio	interleaving.	OM			
n		4.3 Memory Hierarchy			
	4c. Discuss different types of main memory.	4.4 Main Memory and			
	4d. Discuss different types of auxiliary memory.	Auxiliary Memory			
	4e. Define Associative Memory.	4.5 Associative Memory			
	4f. Describe cache and virtual memory.	4.6 Cache Memory			
	4g. List advantages and disadvantages of using	4.7 Virtual memory			
	cache memory.				
	4h. Describe various architectural aids to				
	implement cache and virtual memory.				
Unit – V	5a. Define I/O interface.	5.1 Input-Output Interface			
Input/outpu	5b. Explain methods of Asynchronous Data	5.2 Asynchronous Data			
t	transfer.	Transfer			
Organizatio		5.3 Strobe Control			
n		5.4 Handshaking			
	5c. Describe Asynchronous Serial Transfer.	5.5 Asynchronous Serial Transfer			
	5d. Name different modes of data transfer.	5.6 Modes of Data Transfer			
	5e. Discuss Input Output processor and its	5.7 Input-Output Processor			
	organization.	(IOP)			

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Mark		Marks	
No.		Hours	R	U	A	Total
			Level	Level	Level	Marks
I	Computer Architecture & Register	11	7	10	0	17
	Transfer and Micro-operations	11	,	10		1 /
II	Basic Computer Organization	6	2	7	2	11
III	Central processor organization&	10	6	8	2	16
	Pipeline processing	10	U	0	2	10
IV	Memory Organization	8	5	10	0	15
V	Input/output Organization	7	3	8	0	11
	Total	42	23	43	4	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive**, **psychomotor and affective domain**) so that students are able to acquire the competencies.

Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in affective domain as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Hrs. required
1	I		02

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: Prepare seminars

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
	Computer system Architecture	Mano ,M. Morris	Pearson publication, Latest
1.			Edition
			ISBN: 978-81-317-0070-9
2.	Computer Architecture and	Ghoshal, Subrata	Pearson publication, Latest
۷.	Organization		Edition
	Computer Architecture	Parhami, Behrooz	Oxford publication, Latest
3.			Edition
			ISBN: 978-0-19-808407-5

B) List of Major Equipment/ Instrument with Broad Specifications

- C) List of Software/Learning Websites
 - 1. http://www.ddegjust.ac.in/studymaterial/msc-cs/ms-07.pdf
 - 2. http://www.iitg.ernet.in/asahu/cs222/Lects/
 - 3. http://www.srmuniv.ac.in/downloads/computer_architecture.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. R. M. Shaikh, H.O.D Computer Department, K. D. Polytechnic, Patan
- Prof. K. N. Raval, H.O.D Computer Department, R. C. Technical Institute, Ahmedabad
- Prof. R. K. Vaghela, Lecturer Computer Department, R. C. Technical Institute, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. (Mrs.) Susan S. Mathew
- Dr. Joshua Earnest,