GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: ELECTRICAL INSTRUMENTION (Code: 3330903)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Third Semester

1. **RATIONALE** :

Various types of instrumentation system have to be maintained and operated by diploma electrical engineering holders. This requires the students to understand the theory and the practical related to regarding the working. Therefore this course is designed these needs to work efficiently and effectively in the industry.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain different types of electrical instrumentation systems

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits		Exa	xamination Scheme				
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150	
04	00	02	06	70	30	20	30	150	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Note: It is the responsibility of the institute heads that marks for **PA of theory & ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. COURSE DET.	AILS
----------------	------

Unit	Major Learning Outcomes		Topics and Sub-topics		
Unit – I	1a.Explain the different	1.1	Fundamentals of measurement		
Fundamentals of	terms related to	1.2	Aims of measurement		
measurement &	measurement	1.3	Basic methods of measurement like		
instrumentation	1b.Differntiate between		direct and indirect methods.		
monumentation	different types of errors	1.4	Definitions of basic terms related to		
	1c Identify sources of errors		measurement : range , true value,		
			indicated value, correction,		
			sensitivity, repeatability,		
			reproducibility, precision, significant		
			figure, etc		
		1.5	Types and sources of error : gross		
			error, systematic error, random error		
Unit – II	2a.Explain the working	2.1	DC potentiometer, principle,		
Potentiometers	principle of DC		working and list of applications		
and Bridges	potentiometer	2.2	Different types of potentiometer like		
	2b.Explain the working	2.3	dial type and Crompton type. Measurement of unknown resistance		
	principle of various bridges	2.5	by Wheatstone bridge and Kelvin's		
	2c. Select a bridge to		bridge and Wien bridge for		
	determine various		measurement of capacitance		
	electrical parameters	2.4	Universal impedance bridge		
	ciccultur parameters	2.5	Balanced bridges		
		2.6	Unbalanced bridges: single, two and		
			four variable arm unbalanced		
			Wheatstone bridge.		
		2.7	Self balancing bridges: ac and dc		
			type.		
Unit – III	3a. Explain the construction,	3.1	Classification of instruments based		
Electromechanica	working and features of		on: absolute and secondary		
l Instruments	various instruments.		instrument, principal of operation,		
	3b. Select different types of		quantity instrument measure, kind of		
	electro-mechanical instruments for different	3.2	current, role of instrument, accuracy.		
	kind of measurement.	5.2	Essential torques in indicating instruments : deflecting , controlling		
	3c.Derive the formula for		and damping		
	shunt and multipliers	3.3	Cconstruction , working, common		
	FF	5.5	errors and applications of		
			(a) Moving iron instruments:		
			ammeter, voltmeter,		
			frequency meter, power		
			factor meter.		
			(b) PMMC instrument: ammeter,		
			voltmeter, galvanometer.		
			(c) Dynamometer type meter:		
			ammeter, voltmeter,		
			wattmeter, power factor		
			meter.		
			(d) Multimeter		
			(e) Energy meter (single phase,		
			three phase)		
			(f) Trivector meter		

Unit	Major Learning Outcomes		Topics and Sub-topics
		3.4	 (g) Maximum demand meter (h) Megger (i) Earth tester (j) Phase sequence indicator (k) Solid state energy meter (l) Clip on meter Extension of range of measuring
		3.5	instruments using shunt, multipliers and derive equation for them. Extension of range using
			instrument transformer like CT and PT
Unit – IV	4a. Explain the necessity of	4.1	Calibration and its importance.
Calibration and Testing	calibration 4b.Calibrate various	4.2	Calibration of ammeter, voltmeter and wattmeter as per IS
	electrical instruments	4.3	Calibration of single phase energy meter and its adjustments as per IS code
Unit – V	5a.Explain transducer	5.1	Definitions of Transducer
Transducers	5b.Select transducer for various non-electrical quantities measurement	5.2	Classification of Transducer: self generating analog, variable parameter analog, frequency generating and digital type.
		5.3 5.4	Types of error in Transducer : non- linearity, repeatability, ageing etc Selection of Transducer
		5.5 (a)	Application of Transducer for measurement of Displacement: LVDT, capacitive, etc.
			Pressure: strain gauge, inductive, pirani, etc.
		(c)	Weight : LVDT, strain gauge, etc
			Viscosity: resistive, capacitive, etc. Moisture content: resistive,
			capacitive, etc. Liquid level: LVDT, resistive, etc.
		(h)	Speed: magnetic, photo pulse, etc. Thickness: capacitive, inductive, etc. Flow : hot wire anemometer, strain
			gauge, etc Density of liquid : photo cell and
			LVDT Length: LVDT, resistive, etc.
		(1)	Force : piezo electric,) Light intensity
			PH measurement
			(m) Temperature : thermocouple , thermister, etc
		5.6	Selection of Transducer for specific application

Unit	Major Learning Outcomes	Topics and Sub-topics	
Unit – VI	6a. Perform measurement of active power and reactive	6.1	Measurement of Active power using one watt meter (single phase), two
Three phase power	power		watt meter method considering effect
measurement	6b. Select different methods to measure three phase power in circuits	6.2	of load power factor (three phase), and three watt meter method (three phase). Measurement of Reactive power in single phase and three phase circuit.
		6.3	Two wattmeter method for measurement of three phase power

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit			Dis	tribution of	Theory Ma	rks
Unit	Unit Title	Teaching Hours	R Level	U Level	A Level	Total Marks
Ι	Fundamentals of measurement and instrumentation	06	3	3	1	7
Π	Potentiometers and Bridges	10	4	7	3	14
III	Electromechanical Instruments	16	7	8	6	21
IV	Calibration and Testing	06	1	3	3	7
V	Transducers	12	5	5	4	14
VI	Three phase power measurement	06	1	2	4	7
Tot	al	56	21	28	21	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire the competency. Following is the list of experiments for guidance.

S. No.	Unit No.	Practical/Exercise	Apprx. Hrs. Required
1	II	Test the medium resistance using Wheatstone bridge	2
2	II	Test the low resistance using Kelvin bridge	2

S. No.	Unit No.	Practical/Exercise	Apprx. Hrs. Required
3	II	Test the inductance by using Universal Impedance bridge	2
4	II	Test the capacitance by using Universal Impedance bridge	2
5	II	Use DC ammeter and voltmeter for different ranges	4
6	II	Use Moving Iron voltmeter and ammeter for different ranges	4
7	II	Measure maximum demand using Maximum demand meter	2
8	II	Use Megger for finding resistance of winding insulation	2
9	III	Calibrate Ammeter as per IS	2
10	III	Calibrate Voltmeter as per IS	2
11	III	Calibrate Single phase energy meter as per IS	2
12	III	Use clip on meter for measuring different electrical parameters	
13	V	Measure Linear displacement using LVDT.	2
14	V	Use Thermocouple to control the temperature of a furnace .	2
15	V	Test the Automatic Control of speed control for D.C. motor using tachogenerator	2
16	V	Test the strain using strain gauge.	2
17	VI	Test Power and Power factor(using power factor meter) using two wattmeter method for three phase circuits	4
		Total	36

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Prepare chart for understanding various electro-mechanical instruments
- ii. Seminar
- iii. Search various latest measuring instruments available in market
- iv. Ratings of current transformer and potential transformer

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
1	Electrical and electronic instruments	Sawhney, A.K.	Dhanpat Rai Publications, New Delhi, 2010
2	Electrical Measurements: fundamentals, concepts, applications	Reissland, M.U.	New Age International publishers, New Delhi, 2008
3	A course in electronics & electrical measurement & instrumentation	Gupta ,J.B.	S.K. Kataria and Sons, New Delhi, 2011
4	Principles of measurement & Instrumentation	Morris ,Alan. S	PHI publication, New Delhi, 2011
5	Electrical Instrumentation	Bakshi, U.A., Bakshi A.V.	Technical Publication, Pune,2009
6	Mechanical and industrial measurements,	Jain ,R.K.	Khanna Publication, New Delhi, 2010

S. No.	Title of Books	Author	Publication
7	Electrical Measurements and measuring instruments	Golding, E.W., Widdis, F.C.	Reem publications New Delhi, 2011
8	Electronic Measurements and Instrumentation	K. Lal Kishore	Pearson, New Delhi, 2011

B. List of Major Equipment/Materials with Broad Specification

- i. DC potentiometer : 0 1.1V D.C, TEST TERMINALS, COARSE & FINE adjustment
- ii. Wheatstone bridge : Measuring Range- 1.000Ω to 10.00MΩ, Measuring Arm- x 1mΩ, x 10Ω + 10Ω x 10 + 100Ω x 10 + 1000Ω x10 (min. one step: 1Ω), Ratio Arms- x 0.001 x 0.01, x 0.01, x 0.1, x 1, x 10, 100, x 1000 (M10, M100, M1000 Murray & Varley loop testing), Galvanometer Power Source -Three 1.5V batteries (built-in), Range, ±0.1% of reading on 100Ω to 100kΩ Range, Accuracy- ±0.3% of reading on 10Ω to 1MΩ Range, ±0.6% of reading on 1Ω to 10MΩ Range
- iii. Kelvin double bridge : Range : 0.2 Micro Ohms to 11 ohms, Accuracy : 0.1% (or ±1 Slide wire division whichever is greater), Multiplier : 5 Ranges (0.01, 0.1, 1, 10 & 100)
- iv. Weins bridge : Biasing Voltage : +12V, -12V DC etc..
- v. Universal impedance bridge: Basic accuracy- 0.3%, Versatile, portable, compact LCR Meter for L-Q, C-D, R-Q, |Z|-Q measurements, Measurement frequencies 100 Hz, 120 Hz and 1 kHz
- vi. LCR meter : Basic accuracy- 0.3%, Versatile , portable , compact LCR Meter for L-Q , C-D , R-Q, |Z|-Q measurements, Measurement frequencies 100 Hz, 120 Hz and 1 kHz
- vii. Energy meter : 1Ø and 3Ø analog and digital meters with latest specifications
- viii. Power factor meter : Analog and digital meters with latest specifications
 - ix. Trivector meter : With latest specifications
 - x. Two element wattmeter : With latest specifications
- xi. Three phase power factor meter : Analog and digital meters with latest specifications
- xii. Megger : Mains / battery pack operated (Capable of continuous duty for P.I. measurement of large Generators) analog/ digital insulation tester with selectable ranges of 50V, 250V, 500 V, 1000 V, 2500 V, 5000 V.
- xiii. Phase sequence indicator: Analog and digital meters with latest specifications

- xiv. Clip on meter : Analog and digital meters with latest specifications With true-rms ac voltage and current measurements, the Fluke 373 Clamp Meter reads up to 600 A ac and 600 V ac or dc.
- xv. Current transformer:
- xvi. Decade resistance box: *Accuracy:* ± 1%, *Max. D.C. voltage :* 400 volts, jack-topped binding posts are used as output terminals
- xvii. Range extension board : +12V D.C. at 50mA I.C.regulated Power Supply for Sine wave Oscillator
- xviii. Shunts with ammeters: *Accuracy:* ± 1%, *Measuring Range in ohms like* x 0.001 x 0.01, x 0.01, x 0.1, x 1, x 10, 100, x 1000
 - *xix.* Linear variable differential transducer : $\pm 12V$ D.C. at 50mA I.C.regulated Power Supply for Sine wave Oscillator
 - *xx.* Strain gauge: <u>+</u>12V D.C. at 50mA I.C.regulated Power Supply for Sine wave Oscillator
 - xxi. Thermo-couple : Types B, E, J, K, R, S, T and C thermocouples
- xxii. Thermistor : as per standard specification and latest configurations
- xxiii. PH meter:
- *xxiv.* Multiple transducer kit: Inbuilt power supply, measurement facility, expansion facility and with latest features like computer interface etc.

C List of Software/Learning Websites

- i. Electronics work bench
- ii. <u>www.scientechworld.com</u>
- iii. <u>www.ni.com/labview/</u>
- iv. www.scientificindia.com/home/scientificindia.asp
- v. http://electricalandelectronics.org/
- vi. <u>www.electrical-electronics.co.in/</u>

9. INSTRUCTION STRATEGY :

- i. Use Power point presentation
- ii. Use Over-head projector
- iii. Use case study
- iv. Make field visit

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Shri S.S.Mehta, Sr. Lecturer, Electrical Engineering Department, B&B Institute of Technology, Vallabhvidyanagar.
- Ms.V.R.Kotdawala, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Himmatnagar.
- Prof. A.A. Parmar, Sr. Lecturer, Electrical Engineering Department, B&B Institute of Technology, Vallabhvidyanagar
- Prof. J.K. Rathod, HOD, Electrical Engg. Dept., Tolani F.G. Polytechnic, Adipur

Coordinator and Faculty Members from NITTTR Bhopal