GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: D C MACHINES AND TRANSFORMER (Code: 3330902)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Third Semester

1. RATIONALE:

This course will enable the students to develop skills to operate DC Machines and transformers in power, commercial and industrial sector. They will be able to perform different tests and troubleshoot the various types of DC machines and transformers. Essential theoretical and practical knowledge will be achieved by this course.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- i. Maintain various types of DC machines.
- ii. Maintain various types of transformers.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme										
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks		Theory Marks Pra		Theory Marks Practical Marks		Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200					
04	00	04	08	70	30	40	60	200					

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Note: It is the responsibility of the institute heads that marks for **PA of theory & ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. COURSE DETAILS

Unit	Major Learning	Topics and Sub-topics
Umt	Outcomes	
Unit – I	1a.Explain law of	1.1 Law of conservation of energy
Energy	conservation of energy	1.2 Role of electrical energy and uses
Conversion	and role of electrical	
Principles	energy	
1 morphos	1b. Explain energy	1.3 Electro-mechanical energy conversion
	conversion principles	principle.
		1.4 Conditions for production of EMF
		1.5 Singly excited and doubly excited
		machines.
Unit – II	2a. Explain working	2.1 Working principle of dc generator
DC Generators	principle.	
	2b. Describe different parts	2.2 Construction and functions of various
	of DC generator with	parts of dc generator.
	sketches.	2.3 Materials used for different parts.
	2c. Different types of DC	2.4 Simplex lap and wave winding.
	generator winding.	
	2d.Derive emf equation	2.5 EMF equation of dc generator
	2e. classify different types	2.6.Classification of dc generator
	of dc generator with	2.7. Magnetizing characteristics of DC
	sketches	generator.
	2f.Explain armature	2.8 Armature reaction & commutation
	reaction and	
	commutation	
	2g. Describe performance	2.9 External and internal load characteristics
	characteristic different	of various generators.
	types of Generator	
	2h. Calculate losses and	2.10 Different types of losses and its computation for DC generator
	efficiency.	2 11 Power stages and efficiency of DC
		Generator
		2 12 Derivation of condition for maximum
		efficiency in DC generator.
		2.13 Applications of DC generators in
		industry.

Unit	Major Learning	Topics and Sub-topics		
TT •/ TTT				
Unit – 111	3a. Explain working	3.1 working principle of dc motor and		
DOM	principle of dc motor	concept of back emi		
DC Motors	3b. Classify different types	3.2 Construction and types of dc motors:		
	of dc motors	Series, Shunt, and Compound		
	3c.Derive torque equation	3.3 Derivation of Torque equation for DC		
	2d Compare performance	110001.		
	su. Compare performance	S.4 Performance characteristics of DC Series,		
	different types of DC	Shuht and Compound motor.		
	motors			
	3a Describe speed control	3.5 Speed control of D.C. motor		
	of DC motor	5.5 Speed control of D.C. motor		
	3f Explain working of	3.6 Necessity of starter		
	various starters for DC	3.7 Construction and working of 3 point and 4		
	motor	point DC motor starters		
	3g.Calculate losses and	3.8 Different types of losses and its		
	efficiency	computation for DC motors.		
		3.9 Power stages and efficiency of DC		
		motors.		
	3h.Explain various tests to	3.10 Tests to find losses and efficiency of DC		
	determine losses and	machines: brake test, Swinburne's test,		
	efficiency	field test.		
	3i. list the application of	3.11 Applications of DC Series, Shunt and		
	various dc motors	compound motor.		
Unit – IV	4a. Explain working	4.1 Working principle and construction of		
	principle, classification	single phase transformer		
Single Phase	and construction of	4.2 Classification of single phase transformer		
Transformers	single phase transformer	based on construction and application.		
		4.3 Materials for different parts of		
	Al-Derive en former time	transformer.		
	4b.Derive e.m.f equation	4.4 Computation of EMF equation and		
	of transformer and	transformation ratio.		
	transformation ratio			
	Ac Explain with sketches	4.5 Plotting of No load and on load vector		
	vector diagrams of No	diagrams for single phase transformer		
	load and On load	diagrams for single phase transformer.		
	conditions			
	4d.Explain equivalent	4.6 Derivation of Exact and approximate		
	circuit	Equivalent circuit of single phase		
		transformer.		
	4e.Explain various losses in	4.7 Different types of Losses in transformer		
	transformer.			
	4f. Explain condition for	4.8 Derive condition for maximum efficiency		
	maximum efficiency of	of single phase transformer		
	single phase transformer			
		4.9 Solve numerical for emf equation,		
		equivalent circuit.		

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – V	5a.Describe different types	5.1 Analysis of direct loading test, OC and SC test and sumper test along with
Testing and		connection diagrams.
parallel operation		5.2 Derivation of equivalent circuit
of Single Phase		regulation of transformer
1 ransformers	5b. Describe the need and conditions of parallel	5.3 Need of parallel operation, essential and desirable conditions for parallel operation.
	operation of transformers	5.4 Parallel operation and load sharing of single phase transformer
	5c. Describe Autotransformer and	5.5 Construction and working of Auto transformer and welding transformer
	welding transformer	5.6 Solve numerical for efficiency, voltage regulation and parallel operation.

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Energy Conversion	04	02	02	00	04
	Principles					
II	DC Generators	14	06	08	08	18
III	DC Motors	14	06	08	08	18
IV	Single Phase Transformers	16	04	04	04	20
V	Testing and parallel	08	02	04	04	10
	operation of Single Phase					
	Transformers					
Tot	al	56	6 20 26 24 ·			70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire the competency. Following is the list of experiments for guidance.

S. No.	Unit No.	Practical/Exercise	Apprx. Hrs. Required
1	II	Identify various parts of DC machine	01
2	IV	Identify various parts of single phase transformer	01
3	II	Maintain constant voltage of DC generator at different load conditions.	04
4	II	Test DC shunt generator for magnetizing characteristics.	04
5	II	Test DC shunt generator for external and internal load	04

S. No.	Unit No.	Practical/Exercise	Apprx. Hrs. Required
		characteristic	Requireu
6	II	Test DC series generator for external and internal load characteristic.	04
7	II	Test DC compound generator for external and internal load characteristic.	04
8	III	Demonstration of three point and four point starters for DC motor.	02
9	III	Control the speed of DC shunt motor by armature and field control.	04
10	III	Control the speed of DC series motor.	04
11	III	Perform Swinburne's test of DC machine.	04
12	V	Perform Load test on single phase transformer.	04
13	V	Perform OC and SC test of single phase transformer.	04
14	V	Perform polarity test on single phase transformer.	04
15	V	Operate two single phase transformers in parallel having i) Equal impedances ii) Different impedances.	04
16	V	Perform Sumpner's test on single phase transformer.	04
		Total	56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Prepare journals based on practical performed in laboratory.
- ii. Assignments on solving numerical
- iii. Identify different types of dc machine based on their winding arrangement
- iv. Identify different types of transformer based on application
- v. Prepare chart displaying the various parts of dc machine
- vi. Prepare chart displaying the various parts of transformer
- vii. Prepare chart displaying the various parts of a three and four point dc motor starter

8. SUGGESTED LEARNING RESOURCES

(A) List of Books

S.	Title of Books	Author	Publication
No.			
1	Electrical Technology Vol-II	Theraja, B.L.	S. Chand, New Delhi,
		-	2011
2	Electrical Technology	Uppal, S.L.	Khanna Publication,
			New Delhi, 2011
3	Electrical Machine	Nagrath, I.J. and	Tata McGraw Hill, New
		Kothari, D.P.	Delhi, 2011
4	Electrical Machines	Despande, M.V.	Prentice Hall of India,
		-	New Delhi, 2011
5	Electrical Machine-I	Gupta, J. B.	S. K. Kataria & Sons,
		-	New Delhi, 2011

B. List of Major Equipment/Materials with Broad Specifications

i. DC shunt ,series and compound motor - 230 V DC , 19 A, 1000 RPM, 5HP

- ii. DC shunt motor-generator set 230 V DC, 16 A, 1000 RPM, 5 HP
- iii. Single phase transformer -230 V / 115 V, 1 kVA 1-phase transformer
- iv. Auto transformer : 0 230 V, 10 Amp
- v. Welding transformer: 50 V, 50 /100 Amp

C List of Software/Learning Websites

i.<u>www.nptel.com/iitm/</u>

ii.www.howstuffworks.com/

iii.<u>www.vlab.com</u>

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Shri. R.L. Patel, Sr. Lecturer, Electrical engineering Department, Govt. Polytechnic, Jamnagar
- Shri M. J. Aghara, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Rajkot
- Shri A. P. Shah, Lecturer, Electrical Engineering Department, B. & B. Institute of Technology, V.V.Nagar
- Shri V. C. Jagani, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Junagadh.
- Shri K. V. Dave, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal