GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: D.C. Circuits (Code: 3320903)

Diploma Programmes in which this course is offered	Semester in which offered
Electrical Engineering	Second Semester

1. RATIONALE

At the beginning of electrical engineering program, basic knowledge of principles and concepts of electrical parameters need to be developed in the students. The understanding of basic concepts of electrical engineering parameters will help in the next semester electrical engineering subjects. This will also be useful to analyze in different electrical and electronic engineering applications.

2. LIST OF COMPETENCIES

- Solve electrical Circuits using circuit laws and network theorems
- Energy conversion from electrical to non-electrical and vice versa

Tea	Teaching SchemeTotal CreditsExamination Scheme							
((In Hou	rs)	(L+T+P)	Theory Marks Practical Marks		Total Marks		
2	2	2	6	70	30	20	30	150

3. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T ó Tutorial/Teacher Guided Student Activity; P - Practical; C ó Credit;; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit –I Introduction to electrical energy	1.1 Define the various electrical parameters1.2 Identify the commonly used materials and components used in electrical engineering	 Sources of Electrical Energy; Charge, Current, Potential , voltage, power, Energy Electrical Resistance and its unit.: Ohms law: applications and limitations Specific Resistance and its unit. Parameters affecting the resistance, Effect of temperature on resistance and temperature co-efficient, potential difference ; EMF Conductors, Insulators , semiconductors, capacitors and inductors.

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit –II Electrical circuits	 2.1 Interpret electrical circuits 2.2 Calculate different parameters of the electrical circuit 2.3 Describe Kirchhofføs laws 	 Open circuit, Closed circuit, Short circuits; Series and Parallel circuits with numerical problems Definitions of node, branch, loop ,mesh Kirchhofføs laws and simple numerical
Unit –III Network Theorems	 3.1 Define types of electrical circuits 3.2 Use Super positionøs theorem 3.3 Use Thevininøs theorem 3.4 Use Nortonøs theorem 3.5 Use maximum power transfer theorem 3.6 Undertake star-delta and delta star transformations 	 linear & nonlinear circuit, active and passive network Super position theorem, Theveninø theorem, Nortonø theorems, Maximum power transfer theorem, Star delta transformations with numericals
Unit –IV Electrostatics & Capacitors	 4.1 Define the terms related to electrostatics 4.2 Explain the working of a capacitor 4.3 Identify the different types of capacitors and their applications 4.4 Calculate the required capacitance in electrical circuits 4.5 Calculate the energy stored in capacitors 	 Electric charge, Laws of electrostatics, Electric field, Electrostatic induction Electric flux, Flux Density, Electric field Intensity Capacitance ó Effects of Dielectrics, dielectric constant units Types of Capacitors. Capacitors in series and parallel Energy stored in a capacitor, Rise and decay of current in R-C Circuit and time constant
Unit –V Electromagnetic Induction& Inductors	 5.1 Define phenomenon of electromagnetic induction 5.2 State and apply Faradayøs law, Lenzøs law, Flemingøs right hand rule, Flemingøs left hand rule 5.3 Differentiate Statically and dynamically induced EMF, self and mutual inductance 5.4 Identify the different types of inductor and explain their applications 5.5 Calculate the energy 	 Electromagnetic Induction Faradayøs law, Lenzøs law, Flemingøs right hand rule for generators, Flemingøs left hand rule for motors Statically and dynamically induced EMF, Inductance: Self and mutual inductance, Types of inductor Energy stored in magnetic field

Unit Major Learning Outcomes		Topics and Sub-topics
	stored in magnetic field	
Unit –VI Work Power and Energy	 6.1Define the terms work ,power and energy 6.2 Convert mechanical energy to electrical energy and electrical energy to mechanical energy . 6.3 State joules law and its applications. 	 Definitions and units of Work, Power and Energy (both electrical and mechanical) Conversion from Mechanical units into Electrical units, Problems. Joules law of heat and problems on heating

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit No.	Unit Title	Teaching Hours	Distribution of Theory Marks (Duration –Hours)			
			R Level	U Level	A Level	Total
1	Introduction to electrical energy	6	6	4	5	15
2	Electrical circuits	5	3	4	8	15
3	Network Theorems	5	3	4	8	15
4	Electrostatics & Capacitors	4	5	3	2	10
5	Electromagnetic Induction & Inductors	5	5	3	2	10
6	Work Power and Energy	3	2	1	2	05
		28	24	19	27	70

Legends:

 $R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom<math>\alpha$ s taxomonoy

6. SUGGESTED LIST OF EXPERIMENTS

S. No.	Unit No.	Experiment/Tutorial	
1	1	Measure Voltage and Current in a given linear electrical circuit	02
2	1	Calculate Temperature Co-efficient of a given resistor	02
3	3 2 Connect Resistances in Series to get required effective resistance and verify		02
4	2	Connect Resistances in Parallel to get required effective resistance and verify	02
5	2	Connect Resistances in Parallel and series to get required effective resistance and verify	02
6	2	Measure current in a particular branch of the given electrical circuit using Kirchoff¢s Current Law	02

7	2	Measure Voltage drop in a closed loop of the given electrical circuit using Kirchofføs Voltage Law	02
8	3	Measure current in a particular branch of the given electrical circuit having two input sources using Superposition theorem	02
9	3	Verify Thevinings theorem for a given circuit	04
10	3	Convert Star connected resistances to its equivalent Delta connected resistances and verify	02
11	3	Convert Delta connected resistances to its equivalent Star connected resistances and verify	04
12	4	Obtain equivalent capacitance by connecting given Capacitors in Series and Parallel and verify	02
		Total	28

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

- Preparing journals base on practical performed in laboratory.
- Assignments on solving numerical
- Identify and select various measuring instruments as per required range
- Identify and select resistors based on color code
- Identify and select capacitors based on color code
- Calculate RC Time constant for given R-C series circuit

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author Title of Books		Publication
1	Theraja, B. L.	Electrical Technology Vol-1	S. Chand, 2011
2	Gupta, B.R.	Principles of Electrical Engineering	S.K. Kataria,2012
3	Rao, Uma. K.	Basic Electrical Engineering	Pearson,2011
4	Murthy, R. S.	Basic Electrical Engineering	Pearson,2011
5	Gupta ,J.B.	A Course in Electrical Technology Vol. I	S.K. Kataria,2012
6	Singh, Tarlok	Fundamentals of Electrical Engineering	S.K. Kataria,2012

B. List of Major Equipment/ Instrument

- Ammeter, Voltmeter, Wattmeter, Multimeter, Stop watch, Thermometer
- Rheostats, Capacitors, Inductors

C. List of Software/Learning Websites:

- Electronic Work bench or Circuit maker
- www. kpsec.freeuk.com
- <u>www.howstuffworks.com/</u>

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

- 1.Prof. S.S.Mehta. Lecturer, Electrical engg.Dept. ,B&B Institute of Technology, Vallabhvidyanagar.
- 2. Prof. B. R. Shrotriya. Lecturer, Electrical engg. Dept., Govt. Polytechnic, Junagadh.
- **3.** Prof. V. R. Kotdawala. Lecturer, Electrical engg. Dept. ,Govt. Polytechnic, Himmatnagar.
- Prof. A.A. Parmar Lecturer, Electrical engg.Dept., B&B Institute of Technology, Vallabhvidyanagar.