GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL ENGINEERING (COURSE CODE: 3351904)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	5 th Semester

1. RATIONALE

Prosperity of nation in general depends on the productivity of industries and quality of production. Technical managers, engineers, plant operators, machine operators, supervisors and workers working in industries have to compulsorily meet set standards of production in terms of quality, quantity and productivity so as to compete domestic and international market. This is possible for them only when they employ and exploit the principles of industrial engineering. Industrial engineering always aims to achieve higher productivity and better standards of quality through its constant endeavor in design, improvements and installation of integrated systems of human resource, machines and methods.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

• Improve productivity and quality by applying industrial engineering, quality control and cost reduction/saving techniques.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Improve productivity using work study and method study techniques.
- ii. Analyze work content and calculate standard time in a given situation.
- iii. Apply Statistical Quality Control tools in a given situation.
- iv. Select material handling equipment.
- v. Apply Ergonomics for human comfort at work place.
- vi. Appreciate the emerging trends in industrial engineering.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ng Schen	ne	Total	Examinat	ion Scheme)			
(In Hours)		Credits (L+T+P)	Theory Marks) Theory Marks		Practica Marks	al	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA		
3	0	2	5	70	30	20	30	150	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS.

Unit	Major Learning Outcomes	Topics and Sub topics
Unit	(in cognitive domain)	Topics and Sub-topics
	1a. Appreciate importance of	1.1 Industrial engineering-definition,
Unit-1	industrial engineering,	objectives and techniques.
	productivity and work	1.2 Scope, importance and applications
Introduction	study.	of industrial engineering.
to Industrial	1b. Describe ways to enhance	1.3 Methodology and approach of
Engineering.	productivity for given	Industrial engineering.
	simple cases.	1.4 Productivity – concept, definition,
	1c. Explain concept and	importance and ways to enhance it,
	importance of SQC	numeric examples.
		1.5 Introduction to work study.
		1.6 Introduction to statistical quality
		control (SQC).
11.4.0	2a. Define work study,	2.1 Work study-Definition, techniques
Unit-2	method study and work	and role to enhance productivity.
Work	The asurement.	2.2 Importance of numan factors in
VV0FK Study	20. State the basic procedure	techniques
Study.	study and work	2.3 Basic procedure of method study
	measurement	2.4 Methods of recording data for
	2c. Prepare in the standard	method study using standard
	formats the outline	symbols, process charts and
	process chart, flow	diagrams.
	process chart, flow	2.5 Preparation of operation (outline)
	diagrams, man machine	process chart for given mechanical
	chart and process plan for	assembly having 6-8 components.
	given data.	2.6 Process planning-concept, meaning,
	2d. Modify given process plan	importance, functions, procedure
	and flow diagram for	and forms used.
	improvements.	2.7 Information required for process
	2e. State principles of motion	planning and information available
	2f Analyza work contant and	Property process planning.
	21. Analyze work content and	2.8 Frepare process plan for given mechanical components take 2-3
	a given situation	components
	a given situation.	2.9 Preparation of flow process chart
		and flow diagram for given
		mechanical components having at
		least 6-8 major operations.
		2.10 Given the process plan, operation
		process chart and flow diagram,
		develop questioning techniques in
		analyzing data for method study.
		Also develop and improve the
		method, based on analysis of given
		data.
		2.11 Principles of motion economy

			applied in (a) use of human body,
			(b) design of work place layout (c)
			design of tools and equipment.
		2.12	Principles of micro motion study,
			Therbligs and SIMO chart.
		2.13	Man and machine chart
		2.13 2.14	Basic procedure of work
		2.11	measurement
		2 15	Equipment used in time study
		2.15 2.16	Let alaments and their types
		2.10	Notheda and their types.
		2.17	Methods of measuring time-
		2 10	cumulative and fly back timing.
		2.18	Concept of rating and rating scale.
		2.19	Allowances-types, normal values
			and applications.
		2.20	Calculation of basic time, standard
			time and work content.
		2.21	Concept of work sampling/ activity
			sampling.
	3a. Appreciate importance of	3.1	Definition of quality, quality
Unit-3	quality.		control (QC), quality assurance
	3b. Define quality, quality		(QA), statistical quality control
Quality	control (QC), quality		(SQC) and reliability.
Assurance.	assurance (QA),	3.2	Importance of quality.
	statistical quality control	3.3	Difference between reliability and
	(SQC) and reliability		quality control.
	3c. Differentiate between	3.4	Factors affecting and improving
	inspection and quality		reliability.
	control.	3.5	OA tools.
	3d. Calculate mean, mode.	3.6	Concept of total quality cycle.
	median and standard		quality of design, quality of
	deviation for simple data		performance, quality of conformity
	3e Prepare suitable		and total quality
	frequency distribution	37	Difference between inspection and
	chart for a given data	5.7	quality control
	3f Determine central	38	Fundamentals of statistics-types of
	tendency and dispersion	5.0	variations fraquency class
	in a given situation		boundary and midpoint fraguency
	a given situation.		distribution frequency histogram
	Sg. Calculate probabilities		frequency her short and relyand
	using normal		irequency bar chart and polygon
	distribution.	2.0	
	3h. Define binomial and	3.9	Frequency distribution curve,
	Poisson distribution.		central tendency, spread or
			dispersion and range, mode, median
			and mean, standard deviation and
		0.15	variance with numeric examples.
		3.10	Concept of probability and normal
			distribution.
		3.11	Area under normal distribution and
			examples on normal distribution.
		3.12	Introduction to binomial and
		1	Poisson distribution

	4a. Explain various tools of	4.1 Concept of variability.
Unit-4	SQC.	4.2 SQC tools and statistical
	4b. Compare variables and	fundamentals.
Statistical	attributes	4.3 Concept and differences between
Quality	4c. Calculate control limits,	variables and attributes.
Control	range / mean and prepare	4.4 Control charts for variable quality-
(SQC).	control charts.	types, objectives, applications,
	4d. Calculate number/	calculations of control limits and
	percentage of items falling	range/mean, methods to plot and
	in and outside	interpretations (X bar-R chart) and
	specifications limits from	examples.
	mean and standard	4.5 Control charts for attribute quality-
	deviation using normal	types, objectives, applications,
	distribution curve.	calculations of control limits and
	4e. State and explain various	range/mean, methods to plot and
	methods of acceptance of	interpretations (p, np, 100p and c
	incoming materials	chart) and examples.
	4f. Prepare and operate single	4.6 Process capability – meaning,
	and double sampling plans	definition and method to calculate,
	on the basis of given lot	numeric examples.
	size, AQL and inspection	4.7 Acceptance sampling:
	level.	i. Quality control of incoming
	4g. Describe process	raw material and components.
	capability.	11. Concepts of random
	4h. Explain consumers and	sampling.
	producers risk.	111. Sampling plans: definition,
	41. State the importance of	terminology, types (Single,
	OC curve and interpret	double and multiple),
	OC curves in a given	implementing plans based on
	situation.	given input.
		iv. OC curve-concept, need,
		interpretation of given OC
		interpretation of given OC
		curve.
	5a. Explain various types of	5.1 Plant layout: Definition and concept.
Unit-5	plant layouts with their	5.2 Types of plant layout, their
	merits, demerits and their	applications, advantages and
Plant layout	application.	limitations.
and material	5b. Describe importance and	5.3 Role of material handling systems in
handling	applications of material	industries.
equipments.	handling equipment.	5.4 Material handling equipment-
	5c. Select material handling	Classification, types, specifications,
	equipments for given	applications and selection criteria.
	situation.	
	6a. Explain ISO and its role	6.1 International Organization for
Unit - 6	in industries and	standardization and its role, ISO
	business.	standard series and quality
Recent	6b. Explain TQC and TQM	managements system.
trends in	and its applications.	6.2 Total Quality Control (TQC) and
industrial	6c. Explain six sigma and	Total Quality Management (TQM)-
engineering.	Kaizen with their	philosophical concepts.

	applications.	6.3	Concept of six sigma and its
6d.	Define and explain		applications.
	ergonomics.	6.4	Concept and applications of Kaizen.
6e.	Explain types of	6.5	Definition, objectives and
	workloads and show		applications of ergonomics.
	normal and maximum	6.6	Normal and maximum work area.
	work area.	6.7	Environmental requirements of work
6f.	Explain environmental		place.
	requirements of		
	workplace area and		
	working conditions.		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Introduction to Industrial Engineering.	4	4	0	2	6
II	Work study.	14	4	6	14	24
III	Quality assurance.	6	4	4	2	10
IV	Statistical Quality Control (SQC).	8	4	4	7	15
V	Plant layout and material handling equipment.	4	4	0	2	6
VI	Recent trends in industrial engineering.	6	7	2	0	9
	Total	42	27	16	27	70

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- a. If mid-semester test is part of continuous evaluation, unit numbers I, II (Up to 2.9 only), III and V are to be considered.
- b. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/ programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

	Unit	Practical Exercises	Approx
S. No.	No	(outcomes in Psychomotor Domain)	Hours.
	110.		required
		Preparatory Activity:	
		a. Prepare the table for values of surface finishes	
		achieved in manufacturing processes.	
1.	Ι	b. Give examples of enhancing productivity.	02
		c. Sketch drafting symbols.	
		d. Given the readings, sketch how such can be shown	
		using Vernier and micrometer.	
		Mini Project and presentation:	
		a. Sketch the parts taken in Design of Machine	
		Elements (DME) under Mini project. The batch of	
		DME is to be continued.	
2		b. Prepare process plans for each part.	04
۷.	ALL	c. Prepare flow diagram for each part. Assume	04
		institute's workshop layout.	
		d. Present the work including work distribution,	
		photographs and movies of actual project work	
		using power point presentation.	
		Operation process chart (OPC):	
		Given real mechanical assembly having 6-8 components,	
	Π	prepare operation process chart. (This has to be assigned by	
3		teacher).	06
5.		a. Sketch parts and assembly.	00
		b. Prepare OPC.	
		c. Prepare process plans for all components. Use	
		format given in Annexure-I.	
		Flow diagram(FD):	
		Given real mechanical component having minimum 6-8	
		mechanical operations, prepare FD. (This has to be assigned	
4.		by teacher).	02
		a. Sketch component.	
		b. Sketch institute workshop layout.	
		c. Prepare FD.	
		Man and machine chart:	
		Prepare man and machine chart for given situation. Teacher	
		will assign the real situation. This include:	
5.	II	a. List objectives of preparing man and machine chart.	00
		b. Describe the situation assigned by the teacher.	02
		c. Prepare the man and machine chart.	
		u. Interpret the chart and suggest if any further	
		ninprovements can be made with respect to enhance	
		productivity.	
6.	II	Calculate co-efficient of co-relation for time study person	02

1	1					
		using performance rating technique. Teacher will assign the				
		situation. This include:				
		a. Define performance rating.				
		b. Describe the situation assigned by the teacher.				
		c. List the steps followed to perform the exercise.				
		d. Observe and record the observations				
		e Plot interpret and calculate the co-efficient of co-				
		relation				
		Calculate standard time for a given job using decimal				
		minute stop watch techniques. Teacher will assign the				
_		situation/job/elements to be recorded. This include:				
7.	Ш	a. Sketch the part undertaken for time study.	02			
		b. List elements to be considered.				
		c. Observe and record elements time.				
		d. List and justify allowances to be taken with values.				
		e. Calculate standard time.				
		Frequency distribution curve:				
		a. Take live problem (may be measured variable				
		dimension, result analysis, etc. (Teacher has to				
		assign the live problem) and summarize the data.				
		b. Perform and prepare frequency table.				
	III	c. Determine central tendency spread or dispersion				
		and range mode median and mean standard				
8.		deviation and variance	02			
		d Prenare frequency bar frequency polygon and				
		frequency curve				
		Diet the proof under normal surve				
		e. Plot the areas under normal curve.				
		I. Given the data (leacher will assign the data),				
		determine numbers/probabilities of acceptance/				
		rejection using normal distribution table- 4 cases.				
		Control charts for variables:				
		a. Define variable. Give five examples.				
		b. For given live problem, determine subgroup size,				
9.	IV	measure the variable and record the observations.	02			
		c. Perform necessary calculations and determine				
		cont <u>rol</u> limits.				
		d. Plot $X - R$ chart and interpret the same.				
		Control charts for attributes:				
		a. Define attribute. Give five examples.				
		b. Explain binomial and Poisson distributions.				
		c. For given live problems (different for different				
10.	IV	charts), determine parameters, record the	02			
		observations of attribute.				
		d. Perform necessary calculations and determine				
		control limits.				
		e. Plot p and c charts and interpret the same.				
		Acceptance sampling:				
		a. Show double sampling plan using block diagram.				
11.	IV	b. Prepare/ operate double sampling plans on the basis	02			
		of given lot size, AOL. inspection level and other				
		input for a given problems.				

		c. Record the observations and conclude the outcome.	
12.	ALL	Industrial Visit: Visit at least two related industries. Prepare the report as guidelines provided in notes.	-
Total H	ours		28

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Mini project and presentation topic/area has to be assigned to the students in the beginning of the term by batch teacher.
- d. Student activities are compulsory and are part of term work.
- e. Term work content of industrial visit report should also include following.
 - i. Brief details of industry visited.
 - ii. Type, location, products, rough layout, human resource, etc of industry.
 - iii. Details, description and broad specifications of machineries/ processes observed.
 - iv. Safety norms and precautions observed.
 - v. Student's own observation on industrial environment, productivity concepts, quality consciousness and quality standards, cost effectiveness, culture and attitude.
 - vi. Any other details / observations asked by accompanying faculty.
- f. For practical ESE part, students are to be assessed for competencies achieved. They should be assigned the necessary data and should be given any one experience to perform.

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

Sr. No. ACTIVITY.

l	During Industrial visit for other subjects students should be made familiar
	with various types of material handling equipments used in the industry. They
	should be encouraged to write special reports on material handling
	equipments and type of plant layout in the industries they visited.

9. SPECIAL INSTRUCTIONAL STRATEGIES.

Sr. No.	Unit	Unit Name	Strategies
1	Ι	Introduction to Industrial Engineering.	Movies on productivity.
2	II	Work study.	Movies on work study, live explanation at workshop place, presentations.
3	III	Quality assurance.	Movies on QA, live cases during industrial visits, power point presentations, failure analysis with rejected live parts.
4	IV	Statistical quality control	Movies on SQC, performance, live cases

		(SQC).	during industrial visits, power point				
			presentations.				
5	v	Plant layout and material handling equipments.	Movies on material handling equipments, industrial visits, power point presentations.				
6	VI	Recent trends in industrial engineering.	Movies on trends, presentations.				

10. SUGGESTED LEARNING RESOURCES.

A) List of Books.

Sr.No.	Title of Book	Author	Publication			
1.	Industrial Engineering	C.Natha Muni	New age international			
	(IE) and Management	Reddy	Publishers.			
2.	Handbook of IE:	Couriel Selvendy	Institute of Industrial			
	Technology and	Gavilei Salvelluy	Engineers			
	operations management.					
3.	Comprehensive Industrial	M. I. Manak	Laxmi Publications (P)			
	Engineering.	IVI. J IVIAIICK	Ltd., New Delhi.			
4.	Introduction to Work-	Goorgo Konowoty	International Labor			
	study. ISBN: 9221071081	George Kanawaty	Organisatioin, Geneva.			
5.	Introduction to		National Productivity			
	productivity		Council (NPC).			
6.	Method Study		NPC.			
7.	Work Measurement		NPC.			
8.	Introduction to Statistical					
	quality control. 7th revised	Eugene Grant and	McGraw-Hill Series in			
	edition	Richard	Industrial Engineering and			
	ISBN-13: 978-	Leavenworth	Management			
	0078443541					

B) List of Major Equipment/ Instrument with Broad Specifications.

Sr.No.	Major equipment/ Instrument with Broad Specification.		
1	Decimal stopwatch (Non fly back type).	02 pcs.	
2	Decimal stopwatch (Fly back type)	02 pcs.	
3	Playing cards	2 sets.	
4	M.S Pins 10mm dia X 15mm length with tolerance of \pm 0.01mm.	100 pcs.	
5	Buttons of 6 different colors.	100 of each color.	
6	Sampling rack with 1000 washers	1 set.	

C) List of Software/Learning Websites.

- i. http://en.wikipedia.org/wiki/Industrial_engineering
- ii. http://www.iiie-india.com/IIIE/industrial-engineering.php
- iii. http://www.youtube.com/watch?v=3WmfSfNJr4w (How Receiver Operating Characteristic Curves Work ...)
- iv. http://www.youtube.com/watch?v=J17SUDcrphw (How to construct an operating characteristic (OC) curve)

- v. https://www.coursera.org/course/apstat (basics of statistics)
- vi. http://www.youtube.com/view_play_list?p=299B5CC87110A6E 7 (Lecture Series on Industrial engineering NPTEL)
- vii. http://www.massey.ac.nz/~mbjones/Book/Chapter11.pdf (reading material on statistics)

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- R.R.MAHITCHA, Retired Lecturer in Mechanical Engineering, T.F.G Polytechnic, Adipur.
- P.V.JETHVA, Lecturer in Mechanical Engineering, L.E. College, Morbi.
- R.M. RAJYAGURU, Lecturer in Mechanical Engineering. GP,Porbandar.

Coordinator and Faculty Members from NITTTR Bhopal.

- Prof. S.K.Pradhan, Associate Professor, Mechanical Engg. NITTTR, Bhopal
- Dr. A.K.Sarathe, Associate Professor, Mechanical Engg. NITTTR, Bhopal

ANNEXURE-I

FORMAT FOR PROCESS PLANNING

NAME OF COMPONENT:

MATERIAL AND RAW MATERIAL SIZE:

QUANTITY / BATCH:

.

SETTING

TIME

OPERATION

TIME

OP.NO. DETAILS OF OPERATION
MACHINE
CUTTING
CUTTING
TOOLS,
MACHINE
CUTTING
TOOLS,
MEASURI
NG
TOOLS,
MEASURI
NG
TOOLS
USED
CUT
NG
TOOLS
STROKES
Nmin
N

CUTING
TOOLS
CUT
NG
TOO

	NG TOOLS USED	OF STROKES	OR mm / min)	mm	Min	Min