GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: DESIGN OF STEEL STRUCTURE (COURSE CODE: 3350601)

Diploma Programme in which this courses offered	Semesterinwhich offered
Civil Engineering	5 th Semester

1. RATIONALE

Civil Engineering structures are normally made up of either Steel Sections or of Reinforced Cement Concrete. Normally, Industrial structures are constructed using steel sections. In industry, to cover wider area without any obstruction at floor level due to Columns etc.., normally, steel roof truss is provided and hence Load calculation using IS 875 is required for such trusses.

Using our previous semester study of Structural Analysis and design horizons as per IS-800-2007, in this subject, students will analyse and design different components of steel structure.

In Steel Structure, Rolled Steel Sections are used and hence its connections at different stages on site is highly important for the safety of Structure and hence, study of Connection through Weld or Bolt is important.

2. COMPETENCY(Programme Outcomes (POs) According to NBA terminology)

The course content should be taught and implemented with the aim to develop with different types of skills so that students are able to acquire following competencies:

- 1. Calculate D.L , L.L and W.L on Roof Truss as per IS-875-9184
- 2. Design of Tension & Compression members of Steel Structure along with Foundation, Steel Beam and Welded and Bolt Connection as per IS 800-2007
- 3. Structure Detailing of Steel Roof Truss and Different Steel Structure Component

3. TEACHING AND EXAMINATION SCHEME

	Examination Scheme			TotalCredits	Teaching Scheme (InHours)			
Total Marks	Theory Marks PracticalMarks		(L+T+P)					
	PA	ESE	PA	ESE	С	Р	Т	L
200	60	40	30	70	07	04	00	03

 $\label{eq:legends:L-lecture;T-Tutorial/TeacherGuidedStudentActivity;P-Practical; C-Credit;ESE-End SemesterExamination;PA-ProgressiveAssessment$

4. COURSE DETAILS

Unit	Major LearningOutcomes (Course Outcomes in Cognitive Domain according	Topicsand Sub-topics
UNIT – I LOAD CALCULA TION ON ROOF TRUSS	 to NBA terminology) 1. Calculate Dead Load , Live Load and Wind Load on panel points of a Roof Truss 	 1.1 Rolled Steel Section – ISA , I & H Section , Channel Section and its application in Steel Structure 1.2 Types of Truss , Pitch of Truss , Rise , Spacing of Truss , Purlin , Principal Rafter , Main Tie , Sag Tie , Members of Truss , Roofing material- GI and AC Sheets 1.3 Dead Load of Truss per panel point- Self Weight , Weight of Purlin , Wind Bracing , Weight of Roofing Material 1.4 Live Load per panel point in Truss as per IS – 875 – Part II -1984 when Access is not provided 1.5 Wind Load per panel point in Truss using IS – 875 – Part III -1984
UNIT – II BOLT AND WELDED CONNECTION	 Design of Bolt Connection of Angle Section to Gusset Plate Design of Welded Connection of Angle Section to Gusset Plate 	 1.1 Rigid Connection , Pinned Connection , Semi Rigid Connection , Black Bolts , Turned Bolts , HSFG Bolts , Grade of Bolts 1.2 Lap and Butt Joint , Minimum and Maximum Pitch , Tack Bolting , Edge Distance , Gauge Distance , Bolt Hole 1.3 Shear Capacity of Bolt – Vdsb , Bearing Capacity of Bolt – Vdsb , Bearing Capacity of Bolt – Vdpb as per IS-800-2007 , Bolt Value , Efficiency of Joint 1.4 Numerical for Bolted Connection of Angle Section to Gusset Plate and for Efficiency of Joint having Chain Bolting 2.1 Types of Weld ,Fillet Weld and its symbol , Tack Welding ,Size of weld – Minimum and Maximum, Effective Throat Thickness , End Returns 2.2 Design Strength of Fillet Weld ,Shop and Field Weld as per IS – 800-2007 2.3 Numerical for Welded Connection of Angle Section to Gusset Plate

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
UNIT – III TENSION MEMBR	 Analyze and Design Axially Loaded Tension Member made up of Angle Section 	 1.1 Examples of Tension Members in Civil Engineering Structures 1.2 Design Strength of Tension Member , Design Strength due to Yielding of Gross Section , Design Strength due to Rupture of Critical Section for Angle Section ,Design Strength due to Block Shear in Angle Section as per IS – 800-2007 1.3 Slenderness ratio of Tension Member as per IS – 800 - 2007 1.4 Numerical for Analysis & Design type based on 1.2 for Single and Double Angle Sections on same side and either side of Gusset Plate
UNIT – IV COMPRESSION MEMBER STRUT & COLUMN	 Analyze and Design Strut made up of Angle Section Analyze and Design Axially Loaded Column 	 1.1 Strut , Maximum Slenderness Ratio ,Classification of Cross – Sections and Buckling Class as per IS-800-2007 1.2 Angle Strut as per Cl. 7.5 , IS-800- 2007 1.3 Design Compressive Stress – fcd according to Tables of IS-800-2007 1.4 Numerical on Strut made up of Single Angle , Double Angle same and either side of G.P as per 1.2 & 1.3 2.1 Built up Column , Effective Length of Column as per Table 11 , IS-800-2007 2.2 Design Compressive Stress – fcd according to Tables of IS-800-2007 2.3 Numerical on Column made up of ISHB , ISHB with Flange Plate , Double Channels Back to Back and Toe to Toe

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
UNIT – V LACING & BATTENS	 Design Lacing System (Single or Double) for Built up Column Design Batten System for Built up Column 	 1.1 Objective of Lacing , Single Lacing , Double Lacing 1.2 IS – 800-2007 requirements for Lacing System as per Cl. 7.6 1.3 Numerical on Single and Double Lacing as per 1.2 2.1 Objective of Batten , Batten 2.2 IS – 800-2007 requirements for Batten System as per Cl. 7.7 2.3 Numerical on batten as per 2.2
Unit – VI LATERAL RESTRAINED BEAM & PURLIN	 Design of laterally Restrained Simply Supported beam Design of Purlin made up Angle Section 	 1.1 Main Beam , Secondary Beam , Standard I Sections , Laterally restrained and unrestrained beam 1.2 Plastic Section Modulus – Annexure –H , IS-800-2007 , Section classification as per Table 2 – IS-800-2007 , Shear buckling , Shear Strength and Bending Strength of Section as per Cl. 8.4.1 and Cl. 8.2.1.2 of IS-800-2007 , Deflection as per Table-6 of IS-800-2007 , Shear Leg Effect , Web Crippling 1.3 Numerical related to Design using Single I Section for Simply Supported Beam Subjected to UDL 2.1 Load (D.L , L.L , W.L and its combination) on purlin of a roof truss 2.2 Empirical Design Method for Purlin using Angle Section - D≥L/45 , B≥L/60 , Deflection Criteria – L/180 and Elastic Section Modulus 2.3 Numerical based on 2.1
UNIT-VII SLAB BASE FOUNDATION	 Design of Slab Base Foundation under Axially Loaded Column made up of Single H Section 	 1.1 Slab Base , Gusseted Base , Base plate and its Thickness as per IS-800-2007 , Concrete Block , SBC of Soil , Anchor Bolt , Cleat and Dummy Angle 1.2 Numerical on Slab Base Foundation under Column made up of Single H Section

Unit **Unit Title Distribution of Theory Marks** Teaching R U Total Α Hours Level Level Level Marks Ι 02 00 LOAD 05 10 11 CALCULATION ON ROOF TRUSS II 04 01 02 04 07 **BOLTED AND** WELDED CONNCTION III 04 07 **TENSION MEMBER** 00 02 05 IV **COMPRESSION** 06 02 02 06 10 MEMBER STRUT & **COLUMN** V LACING & BATTEN 04 01 02 04 07 VI 05 02 04 08 14 LATERALLY **RESTRAINED BEAM** & PURLIN VII **SLAB BASE** 03 02 00 05 07 FOUNDATION 00 SKETCHES AS 03 04 00 07 MENTIONED IN DRAWING WORK Total 42 13 42 70

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS(THEORY)

Legends: R = Remember, U = Understand, A= Apply and above Level (Bloom's revised taxonomy) Note :This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

16

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

Thepractical/exercisesshouldbeproperlydesigned and implemented withan attemptto develop different types of skills (Course outcomes in psychomotor and effective domain) so that students are able to acquire the competency. Following is the list of experiments for guidance.

S. No.	UnitNo.	Practical/Exercise	Approx. Hrs. Required
1	Ι	Find Forces in given Truss Members using Graphical Method due to D.L, L.L and W.L and Design Forces in the Members – Drawing Sheet – No: 01, A1 Size	08
2	II , III , IV	Draw Plan & c/s Elevation of Eaves Level Joint, Ridge Joint and Two Other Joints of a Truss Selected in Sheet No:01 with all design details like Size of Angle Section, G.P, Connection Details, Purlin, Roofing Material – Drawing Sheet – No: 02 , A1 Size	10

GTU/NITTTR/Bhopal/14-15

S. No.	Unit No.	Practical/Exercise	Approx. Hrs. Required
3	IV , VII	Draw Plan and c/s Elevation of Built up column made up of Double Channel provided back to back with Single or Double Lacing Draw Plan and c/s Elevation of Slab Base Foundation under column made up of H section Sheet No:03 – A1 Size Following Neat sketches will be prepared in	08
·		 Sketch Book Different Types of Truss Truss Details – Spacing of Truss , Principal Rafter , Main Tie , Members , Ridge , span , Roof Covering , Purlin etc Eaves Level Joint of Truss Ridge Level Joint of Truss Beam to Beam Connection at Same Level Beam to Beam Connection at Different Level Column to Beam Seated Connection (Weld & Bolt Connection) Column to Beam framed Connection (Weld & Bolt Connection) Gusseted Slab Base Foundation 	
5.	I , II , III , IV , V, VII	Prepare a Report File related to Calculation work of Drawing Sheet No: 1 , 2 & 3	10
6.		Site Visit of Industry Truss , Steel Structure Railway Platform – Report , Photographs	06
		TOTAL HOURS	56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Collect the Photographs of nearby Typical Roof Trusses and from Internet
- 2. Collect the Photographs of Elevated Steel Structure Water Tank
- 3. Collect the Photographs of Steel Columns with Lacing and / or Batten

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

1. Site Visit must be arranged for Industrial Truss to explain Truss terminology and Connection Details

2. Show video of Fabrication work using Bolt and Weld

9. SUGGESTED LEARNING RESOURCES

A. List of Books: *** STUDENT IS PERMITTED TO APPEAR IN THEORY & PRACTICAL EXAMINATION WITH THESE BOOKS (highlighted and under lined)

Publication S. Title of Books Author No. Bureau of Indian Standard 1. ***IS-800 - 2007 ____ Bureau of Indian Standard 2. ***Handbook on Steel - SP-6 -----Bureau of Indian Standard 3. <u>***IS - 875 - 1984</u>, Part - III ----. K. International Pvt Ltd Design Of Steel Structures (By S S Bhavikatti 4. Limit State Method As Per Is: 800-2007) **Design of Steel Structures** K. S. Sai Ram 5. Pearson Education India Design Of Steel Structures: N. Subramanian 6. Oxford University Press Theory And Practice (2010)LIMIT STATE DESIGN OF 7. S. K Duggal Tata Mcgraw Hill Education STEEL STRUCTURES Private Limited

B. List of Major Equipment/Materials

- 1. Drawing Hall having Drawing Facilities
- 2. Models of Truss, Built up column, Beam and Column Connection

C List of Software/Learning Websites

- 1. http://nptel.iitm.ac.in Lecture series from IIT , Guwahati
- 2. elearning.vtu.ac.in

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

FacultyMembers fromPolytechnics

- 1. PROF. BGRAJGOR,H.O.D, APP. MECH., BBIT, V VNAGAR
- 2. PROF. B G BHANKHAR, H.O.D, APP. MECH., GP, AHMEDABAD
- 3. PROF. K K PATEL, H.O.D, APP. MECH., GP, RAJKOT
- 4. PROF. C H BHATT, LAM, DR. S & S S GANDHI ENGG. COLLEGE, SURAT
- 5. PROF. BHRUGULI H GANDHI, LAM, GGP, AHMEDABAD

CoordinatorandFaculty Members fromNITTTR Bhopal

- 1. DR.K K PATHAK, PROFESSOR CIVIL, NITTTR, BHOPAL
- 2. DR.M C PALIWAL, PROFESSOR, CIVIL, NITTTR, BHOPAL