GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: STRUCTURAL MECHANICS

(**Code:** 3330604)

Diploma Programme in which this course is offered	Semester in which offered	
CIVIL	THIRD	

1. RATIONALE

The course of Applied Mechanics considers the external effects due to action of force system as studied in Second Semester.

All Civil Engineering Structures are subjected to different loadings and behave in a specific way. In this course, analysis of determinate structures under action of transverse loading, along with, analysis of members under direct loading is stressed. Analyses of Industrial Trusses are incorporated.

This course will lay sound foundation to design Steel & Concrete Structures.

2. COMPETENCY

Understand the behaviour and Analyse Statically Determinates structures like beam, Column & Truss.

Evaluate the member material properties under direct loading

3. TEACHING AND EXAMINATION SCHEME

	Examination Scheme		Total Credits	cheme	ching S	Teac				
Total Marks	Marks	Practical	Theory Marks		Theory Marks		(L+T+P) Theory		(In Hours)	
IVIAINS	PA	ESE	PA	ESE	C	P	T	L		
150	30	20	30	70	07	02	01	04		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; Credit; ESE - End Semester Examination; PA - Progressive Assessment

Note: It is the responsibility of the institute heads that marks for **PA** of theory & **ESE** and **PA** of practical for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics		
Unit – I	1a. Evaluate Material	1.1 Different types of Structures and		
	Properties Under	different types of Loads		
DIRECT	Longitudinal & Lateral	1.2 Direct Stress, linear Strain, Hook's		
STRESS &	Loads	Law		
STRAIN		1.2 –I Numerical on Problems on		
	1b. Analyse Composite &	Direct Stress & Linear Strain		
	Compound Section	1.2 –ii Stress Strain curve of Mild		
		Steel		
	1c. Compute Strain Energy	1.3 – iii Modulus of Elasticity, Yield		
	under Different Types of	, Breaking & Ultimate Stress and		
	Loading & Calculate	factor of Safety and problems		
	numerical problems	1.3 Lateral Strain and Poission's ratio		
		with problems		
	!	1.4 Shear Stress, Shear Strain & Shear		
	!	Modulus		
	!	1.5 Problems of Volumetric Strain		
	!	1.6 Distinguish Sudden, Gradual &		
	!	Impact Load		
	!	1.6-i Define & Calculate Strain		
	!	Energy & Proof Resilience for		
		Sudden, Gradual & Impact Load		
Unit – II	2a. Compute Moment of	2.1 Moment of Inertia & its Importance		
	Inertia of Symmetric &	2.2 Parallel & Perpendicular Axis		
MOMENT OF	asymmetric structural	Theorem		
INERTIA	section	2.3 Formula of Moment of Inertia of		
		solid & Hollow sections like		
		Rectangle, Triangle, Circle		
	!	2.4 Moment of Inertia about C.G for I		
	!	section, H section, Channel		
	!	Section , Angle Section , T		
		Section and Built up Section		
	!	having flange plates to I & H		
	!	Section and of Double Channels		
		back to back & toe to toe		
Unit – III	3a. Draw Shear Force &	3.1 Statically Determinate Beam		
CE O DATE	Bending Moment	3.1 – I Cantilever, Simply Supported		
S.F & B.M IN	Diagram for Statically	& Over Hang Beam		
BEAM	Determinate Beam	3.2 Relation between Shear Force and		
		Bending Moment		
		3.3 Sagging & Hogging Bending Moment and its importance		
		Moment and its importance		
		3.4 Point of Contra flexure & its		
		importance		
		3.5 S.F & B.M Diagram for Cantilever, Simply Supported & Over Hang		
		Beam subjected to Point Load and/ or		
		U.D.L		
		U.D.L		

Unit	Major Learning Outcomes	Topics and Sub-topics		
Unit – IV	4a. Calculate & draw Shear	4.1 Bending Theory Equation		
	Stress & Apply Bending	4.1-i Bending stress, Sectional		
BENDING &	theory in Beam	Modulus, Nutral Axis		
SHEAR		4.1 – ii Bending theory to Statically		
STRESSES IN		determinate beams having		
BEAM		rectangular or circular section		
		4.2 Shear Stress equation Va \bar{Y} / (b I)		
		4.2 –i Shear Stress Distribution		
		Diagram for Solid & Hollow		
		Rectangular And Circular Section		
		4.2 – ii Shear Stress Distribution		
		Diagram for I, H, T, Channel &		
		Angle Section		
Unit – V	5a. Analyse Statically	5.1 Perfect & Imperfect Truss		
	Determinate Truss	5.2 Various trusses for different spans		
ANALYSIS		and		
OF TRUSS		application		
		5.3 Triangle, Howe, North Light & Fan		
		truss under Panel Point Loads using		
		Graphical & Method of Joint		
Unit – VI	6a. Calculate Load carrying	6.1 Column & Strut		
	capacity of Column &	6.2 Short & Long Column		
COLUMN &	Strut	6.3 End Condition of Column and		
STRUT		effective Length of Column & Modes		
		of		
		Failure in column		
		6.4 Radius of Gyration, Slenderness		
		Ratio		
		6.5 Euler's Crippling Load		
		6.6 Rankin's load / Buckling Load of Column		

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
I	DIRECT STRESS &	10	02	02	06	10
	STRAIN					
II	MOMENT OF	06	02	00	08	10
	INERTIA					
III	S.F & B.M IN BEAM	14	04	00	16	20
IV	BENDING & SHEAR	10	04	00	06	10
	STRESSES IN BEAM					
V	ANALYSIS OF	10	04	02	06	12
	TRUSS					
VI	COLUMN & STRUT	06	02	02	04	08
To	Total		18	06	46	70

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire the competency. Following is the list of experiments for guidance.

S. No.	Unit No.	Practical/Exercise	Apprx.		
			Hrs.		
			Required		
1	I	Tension Test on Mild Steel	04		
2	I	Determine Young's Modulus of wire of Given	02		
		Material			
3	I	IZOD Impact Test on Mild Steel	02		
4	I	Charpy Test	02		
5	I	At Least Six Problems of Unit - I	02		
6	II	Moment of Inertia of Fly Wheel	02		
7	II	At least Four Problems of Moment of Inertia	02		
8	IV	At Least Eight Problems of Unit IV	02		
9	V	Graphical Analysis of Truss (At least THREE Trusses	06		
10	777	Decrease tests End Conditions of Colores	02		
10	VI	Demonstrate End Conditions of Column	02		
11	VI	At Least Six Problems of Unit - VI	02		
		TOTAL	28		
TUTORIAL					
1	III	AT LEAST 12 PROBLEMS OF UNIT III	08		
11	V	AT LEAST 04 PROBLEMS OF UNIT V	06		
		(ANALYTICAL)			
		Total	14		

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Visit Industrial Shed ,Identify Type of Truss and its Components
- 2. Survey Various type of Structural Steel Sections

8. SUGGESTED LEARNING RESOURCES

A. List of Books:

S.	Title of Books	Author	Publication
No.			
1.	Theory of Structures	R S KHURMI	
2.	Strength of Material	S	
		RAMAMURTHAN	
3.	Strength of Material &	Dr. B C PUNAMIA	
	Mechanics of Structures		

B. List of Major Equipment/Materials

- 1. Universal Testing Machine
- 2. SEARL'S Apparatus to find Young's Modulus
- 3. Working Model of End Conditions of Column
- **4. IZOD Impact Test Apparatus**
- **5. CHARPY Test Apparatus**
- 6. FLY WHEEL

C List of Software/Learning Websites

- 1. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- **2.** en.wikipedia.org/wiki/Shear_and_moment_diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- **4.** www.engineerstudent.co.uk/stress_and_strain.html
- **5.** https://www.iit.edu/arc/workshops/pdfs/**Moment_Inertia**.pdf

9. INSTRUCTIONAL STRATEGICS:

Teachers can prepare or download ppt of different topic's civil engineering application, can prepare alternative slides.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- 1. PROF. B G RAJGOR, H.O.D, APP. MECH., BBIT, V V NAGAR
- 2. PROF. K VENKATESHWARLU, H.O.D, APP. MECH., TFG POLYTECHNIC , ADIPUR
- 3. PROF. J H GABRA, I/C H.O.D, APP. MECH., G.P, GODHARA

Coordinator and Faculty Members from NITTTR Bhopal