GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: Hydraulics (Code: 3330603)

Diploma Programme in which this course is offered	Semester in which offered
Civil Engineering	Third

1. RATIONALE

For understanding the behaviour of water in various pipes, channels, notches, weirs etc. the study of this course is highly essential.

The Civil Engineering technicians must be able to measure flow of water in different situations and must be able to compute the discharge. And accordingly he can apply this ability while performing his job on the field, with ease and confidence.

This course will be helpful to students for understanding the fundamentals of Water Resources Management and Hydraulic Structures

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- 1. Apply concepts of Hydraulics in Civil Engineering Application
- 2. Measure different Hydraulic parameters like pressure & velocity

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme			Scheme		
	(In Hou	rs)	(L+T+P)	Theory	Marks	Practical	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
3	1	2	6	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Note: It is the responsibility of the institute heads that marks for **PA of theory & ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. COURSE DETAILS

I Init	Major Learning	Topics and Sub-topics	
Unit	Outcomes		
Unit – I	1a.Explain	1.1 Technical terms used in Hydraulics – Fluid	
Introducti	Terminology	Mechanics, Hydraulics, Hydrostatics, Hydro	
on,	1b. Convert pressure	kinematics Hydro Dynamics-Ideal and Real	
Pressure	from one expression	Fluid.	
and	/ unit to another	1.2 Properties of liquid – Viscosity-Density-	
pressure	expression/ unit	Specific Gravity-Surface Tension-Capillarity	
measurem	1c. Describe different	Vapour Pressure-Elasticity.	
ent	methods for	1.3 SI units used in hydraulics	
	Measuring Pressure.	1.4 Various types of pressure – Atmospheric	
	1d. State the Properties	Pressure-Gauge Pressure-Absolute Pressure	
	of Liquid.	Vacuum Pressure-Separation Pressure	
		1.5 Measurement of pressure	
		1.5.1 Measurement of light pressure by Pizometer	
		tube	
		1.5.2 Measurement of moderate pressure by "U"	
		tube	
		Manometer (Positive and Negative pressure)	
		1.5.3 Measurement of Gauge pressure and	
		Vacuum	
		pressure	
		1.5.4 Measurement of difference pressure using	
		"U"	
		tube Manometer and inverted "U" tube	
		Manometer	
		1.5.5 Conversion of one pressure to another	
		pressure	
Unit – II	2a Explain Relation	2.1 Relation between pressure and depth of liquid	
Hydrostati	between pressure and	2.1.1 Establish above relationship	
cs	depth of liquid	2.1.2 Pressure diagram for different conditions	
	2b.Compute Total	2.2 Total pressure and center of pressure	
	Pressure and Centre	2.2.1 Total pressure and center of pressure from	
	of pressure	pressure diagram for horizontal, vertical and	
		inclined immersed surfaces	
		2.2.2 Conversion of one pressure to another	
		pressure	
		(using S.I.units)	
		2.2.3 Computation of Total Pressure and depth	
		of centre of pressure	
Unit – 111	3a. Explain different	3.1 Types of flow - Laminar Turbulent	
Hydro	types of flow	Uniform Non-uniform – Steady Un-steady –	
kinematics	3b. Derive Continuity	Rotational and irrotationalOne, Two and Three	
&	Equation	Dimensional flow	
Hydrodyn	3c. Define energy	3.2 Reynold's number	
amics	3d Apply Bernoulli's	3.2.1 Definition	
	theorem to measure	3.2.2 Computation to identify type of flow	
	the pressure.	3.3 Continuity Equation	

	.	
Unit	Major Learning	1 opics and Sub-topics
	Sa Maggura Discharga	2.2.1 Statement and derivation
	Se.Measure Discharge.	3.4 Types of Energy Dotential Pressure and
		s.4 Types of Energy – Totential, Tressure and kinematics
		3.5 Bernoulli's Equation
		3.5 1 Statement and derivation
		3.5.2 Assumptions and limitations
		2.5.2 Applications (Ditot tube, Vanturimator
		s.s.s Applications (Filot tube, Venturimeter,
		2.6 Momentum Equation
		3.0 Momentum Equation
	As Commente Hadresslin	3.6.1 Statement and explanation
Unit - IV	4a. Compute Hydraulic	4.1 Definition and types of orffice
Hydraulic	Coefficient	4.2 Various Hydraulic Coefficient and its relation
coefficient,	4b. Calculate flow	4.2.1 Coefficient of Contraction, Velocity,
notches	through notches and	Discharge.
and weirs	weirs.	4.3 Experimental derivation of Hydraulic
	4c.List types of Notches	coefficients.
	and weirs.	4.4 Types of notches and weirs
		4.4.1 Derivation of equation for discharge
		measurement through rect. and V notch.
		4.5 Computation of discharge through notches
		4.5.1 Rectangular Notch
		4.5.2 V -Notch.
		4.6 Computation of discharge through weirs
		4.6.1 Discharge through narrow crested and broad
		Crested weir.
		4.6.2 Discharge through cipolletti weir.
Unit – V	5a. Explain Energy	5.1 Characteristics of flow through pipes
Flow	(Head) losses	5.2 Major and Minor Energy (Head) losses in pipe
through	5b. Draw Hydraulic	Flow- frictional loss, loss of head at entry,
pipes	Gradient Line (HGL)	exit,
	and Total Energy	Sudden enlargement and contraction and at
	Line (TEL)	bend.
	5c. Design Pipeline	5.2.1 Computation of major head by Darcy
		Weisbach
		Equation.
		5.3 Hydraulic Gradient Line (HGL) and Total
		Energy Line (TEL)
		5.4 Design of Pipeline-using formula &
		Nomogram
.		5.5 Compound pipe and equivalent size.
Unit – VI	6a. Analyse uniform	6.1 Characteristics of open channel flow
	flow	6.1.1 Comparison of pipe flow and channel flow.
Flow	6b. Understand Specific	6.1.2 Field examples of open channel
through	Energy Diagram	6.2 Analyse uniform flow
Open	bc. Mesure Velocity of	6.2.1 Froud's number,
Channel	tlow And calculate	6.2.2 Hydraulic mean depth- concept &
	discharge.	computation
1		6.2.3 Use of Chezy's and Manning's formulae

Unit	Major Learning Outcomes	Topics and Sub-topics	
		6.2.4 Most economical sections of channel	
		6.2.4.1 Rectangular, Trapezoidal and circular	
		shapes.	
		6.3 Specific Energy Diagram	
		6.4 River Gauging	
		6.4.1 Measurement of mean velocity using surface	
		float, velocity rod and current meter.	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching Hours	R Level	U Level	A Level	Total Marks
Ι	Introduction, Pressure and pressure measurement	7	3	4	4	11
II	Hydrostatics	5	3	4	-	7
III	Hydro kinematics & Hydrodynamics	8	2	7	7	16
IV	Hydraulic coefficient, notches and weirs	8	2	5	7	14
V	Flow through pipes	7	3	4	4	11
VI	Flow through Open Channel	7	3	4	4	11
To	otal	42	16	28	26	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire the competency. Following is the list of experiments for guidance.

S. No.	Unit No.	Practical/Exercise	Apprx. Hrs. Required
1	Ι	To measure the pressure of water in pipe by (a) Piezometer (b) Different types of manometers	4
2	III	To determine discharge through a given venturimeter.	4
3	IV	To determine Cc, Cv, and Cd for different types of orifices	4
4	IV	Computation of coefficient of discharge for V notch and Preparation of calibration graph for interpolation and extrapolation	4

S. No.	Unit No.	Practical/Exercise	Apprx. Hrs. Required
5	IV	Computation of coefficient of discharge for Rectangular notch and Preparation of calibration graph for interpolation and extrapolation	4
6	V	Determination of loss of head in various diameter of pipes and effect of material of pipe on loss of head	4
7	III	Demonstrations of Bernoulli's Appratus	2
8	III	Demonstration of Reynold's number	2
		Total	28

1	Ι	Tutorial on Pressure measurement	2
2	II	Tutorial on Hydrostatics	2
3	III	Tutorial on Hydrodynamic and Hydro kinematics	4
4	IV	Tutorial on Hydraulic coefficient, notches and weirs	2
5	V	Tutorial on Flow through pipes	2
6	VI	Tutorial on Flow through Open Channel	2
		Total	14

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- 1. Student will visit nearby Canal Structure and Submit report for the same.
- 2. Student will Survey for Pressure Measuring devices.
- 3. Student will do market survey for pipes of different materials.
- 4. Student will solve tutorial examples

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Hydraulics, Fluid Mechanics and	R. S. Khurmi	S.Chand
	Hydraulic machine		
2	Hydraulics, Fluid Mechanics and	R K Bansal	S.Chand
	Hydraulic machine		
3.	Hydraulics, Fluid Mechanics and	S.Ramamrutham	Dhanpat Rai
	Hydraulic machine		
4.	Fluid Mechanics	A K Jain	Khanna Publishers
5.	Journal of experiments in Hydraulics	Rao and Hasan	New Height
6.	Hydraulic laboratory	Rao and Hasan	New Height
7.	Fluid Mechanics	Dr.M.L.Mathur	Std.Publication

8	Fluid Mecha	nics & Hydraulics	S.C.Gupta	Pearson E	ducation	
_		ja da da				
9.	Hydraulics a	nd Hydraulic machine	Prof.V.P.Priyani	Charotar l	Publication	
	2	•	-			
0						
B.	List of Ma	ajor Equipment/Mater	rials			
1. Pie	ezometer	2. U-Tube Manome	eter 3. Ventut	rimeter	4. V-notch	

5. U-notch 6. Pipes- PVC, G.I., 7. Measuring Tank 8. Stop Watch

9. Gauge 10. Mercury

Or Hydraulic Bench equipped with all above equipments

C List of Software/Learning Websites

- 1. www.waterbouw.tudelft.nl/
- 2. <u>www.learnrstv.com</u>
- 3. <u>www.shiksha.com</u>, IIT, Roorkee
- 4. <u>www.blackwellpublishing.com</u>
- 5. <u>www.hrpwa.org</u>
- 6. <u>www.creativeworld9.com</u>
- 7. <u>nptel.iitm.ac.in</u>
- 9. Instructional strategies:

Unit No.	Торіс	Instructional strategy
		/ Key Resources
Unit-I	Pressure Measure Measurement	3-D Sketch or PPT
		Visit Laboratory
Unit-III	Bernaulli's Theorem	Visit Laboratory
		Bernaulli's Apprattus
Unit-III	Weirs	Visit nearby Weir
		РРТ
Unit-V	Head loss due to friction	Visit Laboratory
		Pipes of different dia.
		And materials
Unit-VI	Flow through Channel	Visit nearby Canal
		РРТ
Unit-VI	River Gauging	Video film
	TUTORIALS	HANDOUTS

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- 1. Shri P.A. Pandya, Lecturer in Civil Engg. Deptt. Govt. Polytechnic, Himatnagar
- 2. Shri H. R. Mehta, Lecturer in Civil Engg. Deptt. C. U. Shah Polytechnic, Surendranagar
- 3. Shri Anil K. Belani, Lecturer in Civil Engg. Deptt. Tolani F. G. Polytechnic, Adipur
- 4. Smt. Rina K. Chokshi, Head, Civil Engg. Deptt. Parul Institute of Engg. And Tech. (Diploma Studies), Limda, Vadodara.

Coordinator and Faculty Members from NITTTR Bhopal