GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Advanced Mathematics (Group-1) (Code: 3320002)

Diploma Programmes in which this course is offered	Semester in which offered
Biomedical Engineering, Chemical Engineering, Electrical Engineering, Computer Engineering, Electronics & Communication Engineering, Information Technology, Power Electronics	Second Semester

1. RATIONALE

The subject is classified under Advance Mathematics and students are intended to know about the basic concepts and principles of Mathematics as a tool to analyze the Engineering problems. Mathematics has the potential to understand the Core Technological studies.

2. LIST OF COMPETENCIES

The course content should be taught so as to understand and perform the Engineering concepts and computations. Aim to develop the different types of Mathematical skills leading to the achievement of the following competencies.

- Select proper Mathematical tool to solve given engineering problems.
- Apply concepts of Calculus or suitable tool to analyze given Industrial situation.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme (In Hours)		Total Credits (L+T+P)	Examin Theory Marks		mination Sch Practica	eme Il Marks	Total Marks	
L	Т	Р	С	ESE	РА	ESE	РА	
2	2	0	4	70	30	0	0	100

Legends:

L-Lecture; T ó Tutorial/Teacher Guided Theory Practice; P -Practical;C ó Credit; ESE -End Semester Examination; PA - Progressive Assessment.

Unit	Major Learning Outcomes	Topics and Sub-topics		
Unit – I	1a.Simplify Comlex	Concept, Modules and Amplitude form, Square Root of		
Complex	expressions	Complex Number, De Moivreøs Theorem for Integer <i>n</i> .		
Number	1b .Find Modulus and			
	Amplitude of given			
	expressions			
	1c .Find the root of complex			
	number			
	1d.Use De Moivreøs Theorem			
	to simplify and to find roots			
Unit– II	2a .Solve the problem using	2.1 Function Concept and Examples		
Function &	functions	2.2 Limit Concept of Limit, Standard Formulae and		
Limit	2b .Solve the problem of	related Examples.		
	function using the concept of			
	Limit			
Unit– III	3a .Differentiate the various	3.1Differentiation : Definition, Rules of, Sum, Product,		
Differentiation	function	Quotient of Functions, Chain Rule, Derivative of		
& itøs	3b .Apply the differentiation to	Implicit functions and Parametric functions,		
Applications	Velocity, Acceleration and	Logarithmic Differentiation. Successive Differentiation		
	Maxima & Minima	up to second order		
		3.2 Application: Velocity, Acceleration, Maxima &		
		Minima.		
Unit– IV	4a .Integrate the various	4.1 Integration:Concept, Integral of Standard		
Integration & its	function	Functions, Working Rules of Integration, Integration by		
application	4b .Apply the Integration for	Parts, Integration by Substitution Method, Definite		
	finding Area and Volume	Integral and its properties.		
		4.2 Application: Area and Volume.		
Unit-V	1a. Find the differentiation of	5.1 Definition, Rules of Differentiation, Sum, Product,		
Differential	the various functions	Quotient of Functions, Chain Rule,		
Equations	1b. Obtain the differentiation of	5.2 Derivative of Implicit functions and Parametric		
	higher order derivatives	functions, Logarithmic Differentiation.		
	1c. Apply the derivatives for	5.3 Successive Differentiation up to second order		
	Velocity, Acceleration,	5.4 Application: Velocity, Acceleration, Maxima &		
	Maxima & Minima	Minima.		

4. DETAILED COURSE CONTENTS

5. SUGGESTED SPRCIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit No.	Unit Title	Teaching	Distribution of Theory Marks			
		Hours		U Level	A Level	Total
1.	Complex Number	3	2	5	3	10
2.	Function & Limit	4	3	5	4	12
3.	Differentiation & its Application	8	4	8	6	18
4.	Integration & its Application	8	4	8	4	16
5.	Differential Equations	5	2	8	4	14
Total		28	15	34	21	70

Legends:

R = Remembrance; U= Understanding; A= Application and above levels (Revised Bloomøs taxonomy)

6. SUGGESTED LIST OF EXERCISES (During tutorial hours)

The exercises should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency.

S. No.	Unit No.	Exercises/Tutorial
1	1	Co-ordinate Geometry, Practice Examples
2		Use Excel and other software for further understanding of applications
3	2	Practice Examples of Function & Limit
4		Use of Various Method/Techniques
5	3	Differentiation and Related Examples
6		Examples Related to various Methods/Techniques
7		Identify the Engineering Applications from respective branches and solve the problems
8	4	Integration & Related Examples.
9		Examples Related to Various Methods/Techniques
10		Identify the Engineering Applications from respective branches and solve the
		problems
11	5	Statistics, Practice Examples
12		Use Excel and solve the problems

Note: The above Tutor sessions are for guideline only. The remaining Tutorial hours are for revision and practice.

7. SUGGESTED LIST OF STUENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based seminars, internet based assignments, teacher guided self learning activities, course/library/internet/lab based Mini-Projects etc. These could be individual or group-based.

1. Applications to solve identified Engineering problems and use of Internet.

2.Learn graphical sofwares:EXCEL,DPLOT,GRAPH etc.

3.Learn MathCAD to use Mathematical Tools and solve the problems of Calculus.

4..Learn MATLAB and use to solve the identified problems.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication
1	Anthony croft and others	Engineering Mathematics (third edition)	Pearson Education,2012
2	Pandya NR	Advance Mathematics	Macmillan Publishers India Ltd.,2012
3	Deshpande S P	Polytechnic Mathematics	Pune Vidyarthi Gruh Prakashan,1984
4	Prakash D S	Polytechnic Mathematics	S Chand, 1985

B. List of Major Equipment/ Instrument

- 1. Simple Calculator
- 2. Computer System with Printer, Internet
- 3. LCD Projector

C. List of Software/Learning Websites

- 1. Excel 2. DPlot 3.Graph
- 4 MathCAD 5.MATLAB

You may use other Software like Mathematica and other Graph

Plotting software. Use wikipedia.org, mathworld.wolfram.com Etcí

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE:

Faculty Members from Polytechnics

- Dr.N.R.Pandya, HOD-General Dept., Govt. Polytechnic, Ahmedabad
- Dr N A Dani, Lecturer, Govt. Polytechnic, Junagadh.
- Smt R L Wadhwa,Lect Govt Polytechnic,Ahmedabad
- Shri H C Suthar, BPTI, Bhavnagar
- Shri P N Joshi, Govt Polytechnic, Rajkot

Coordinator and Faculty Member From NITTTR Bhopal

•Dr. P. K. Purohit, Associate Professor, Dept. of Science, NITTTR, Bhopal